Транскрипцией называют процесс. Общие сведения. Определение «транскрипция в биологии»

ТРАНСКРИПЦИЯ

Биосинтез молекул рибонуклеиновых кислот (РНК) на соответствующих участках молекул дезоксирибонуклеиновой кислоты (ДНК); первый этап в действии гена по реализации генетической информации. Для синтеза РНК используется одна, т. н. смысловая цепь из двуцепочечной молекулы ДНК. Матричный синтез РНК (т. е. синтез с использованием матрицы, шаблона, в данном случае - ДНК) осуществляет фермент РНК -полимераза. Этот фермент «узнаёт» на ДНК стартовый участок (участок начала транскрипции), присоединяется к нему, расплетает двойную цепь ДНК и начинает синтез одноцепочечной РНК. К смысловой цепи ДНК подходят нуклеотиды, присоединяются к ней по принципу соответствия (комплементарности), а затем передвигающийся по ДНК фермент сшивает их в полинуклеотидную цепь РНК. Скорость роста цепи РНК у кишечной палочки составляет 40-45 нуклеотидов в секунду. Окончание транскрипции кодируется специальным участком ДНК. Подобно другим матричным процессам - репликации и трансляции, транскрипция включает три стадии - начало синтеза (инициация), наращивание цепи (элонгация) и окончание синтеза (терминация). После отделения от матрицы РНК поступает из клеточного ядра в цитоплазму. Информационная РНК (и- РНК), прежде чем присоединиться к рибосоме и в свою очередь стать матрицей для биосинтеза белка (трансляции), подвергается ряду преобразований. Таким образом происходит переписывание (лат. «транскрипцио» - переписывание) генетической информации, заключённой в последовательности нуклеотидов ДНК, в последовательность нуклеотидов и- РНК. Во всех организмах при транскрипции ДНК образуются РНК всех классов - информационные, рибосомальные и транспортные. В 1970 г., когда был открыт фермент некоторых опухолеродных вирусов, осуществляющий синтез ДНК на матрице РНК, т. е. обратную транскрипцию, центральная догма молекулярной биологии потребовала уточнения.

Энциклопедия Биология. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ТРАНСКРИПЦИЯ в русском языке в словарях, энциклопедиях и справочниках:

  • ТРАНСКРИПЦИЯ в Словаре музыкальных терминов:
    переложение или свободная, часто виртуозная, обработка музыкального …
  • ТРАНСКРИПЦИЯ в Медицинских терминах:
    (лат. transcriptio переписывание; син. действие гена первичное) в биологии первый этап реализации генетической информации в клетке, в процессе которого происходит …
  • ТРАНСКРИПЦИЯ в Большом энциклопедическом словаре:
    в музыке - переложение произведения для другого инструмента или свободная, часто виртуозная переработка его для того же …
  • ТРАНСКРИПЦИЯ МУЗ.
    переложение вокального или инструментального сочинения на фортепиано. Т. должна быть сделана так, как будто сочинение написано специально для фортепиано. Лист …
  • ТРАНСКРИПЦИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    Транскрипция - переложение вокального или инструментального сочиненияна фортепиано. Т. должна быть сделана так, как будто сочинение написаноспециально для фортепиано. Лист …
  • ТРАНСКРИПЦИЯ в Современном энциклопедическом словаре:
    (биологическое), биосинтез молекул РНК на соответствующих участках ДНК первый этап реализации генетической информации, в процессе которого последовательность нуклеотидов ДНК "переписывается" …
  • ТРАНСКРИПЦИЯ
    [от латинского transcriptio переписывание] 1) в лингвистике написание, употребляемое в научных целях и ставящее своей задачей дать по возможности точную …
  • ТРАНСКРИПЦИЯ в Энциклопедическом словарике:
    и, ж. 1. лингв. Точная передача на письме особенностей произношения. Транскрипционный - относящийся к транскрипции. 2. лингв. Передача иноязычных собственных …
  • ТРАНСКРИПЦИЯ в Энциклопедическом словаре:
    , -и, ж. В языкознании: совокупность специальных знаков, при помощи к-рых передается произношение, а также соответствующая запись. Международная фонетическая т. …
  • ТРАНСКРИПЦИЯ
    ТРАНСКР́ИПЦИЯ (биол.), биосинтез молекул РНК на соотв. участках ДНК; первый этап реализации генетич. информации в клетке, в процессе к-рого последовательность …
  • ТРАНСКРИПЦИЯ в Большом российском энциклопедическом словаре:
    ТРАНСКР́ИПЦИЯ (муз.), переложение произведения для др. инстр-та или свободная, часто виртуозная переработка его для того же …
  • ТРАНСКРИПЦИЯ в Большом российском энциклопедическом словаре:
    ТРАНСКР́ИПЦИЯ фонетическая (от лат. transcriptio - переписывание), способ письменной фиксации устной речи с помощью спец. знаков с целью возможно более …
  • ТРАНСКРИПЦИЯ в Энциклопедии Брокгауза и Ефрона:
    (лат. Transscriptio, грамм.) ? письменное изображение звуков и форм известного языка, обладающего или не обладающего собственной системой письма, при помощи …
  • ТРАНСКРИПЦИЯ в Полной акцентуированной парадигме по Зализняку:
    транскри"пция, транскри"пции, транскри"пции, транскри"пций, транскри"пции, транскри"пциям, транскри"пцию, транскри"пции, транскри"пцией, транскри"пциею, транскри"пциями, транскри"пции, …
  • ТРАНСКРИПЦИЯ в Лингвистическом энциклопедическом словаре:
    (от лат. transcrip-tio, букв.— переписывание) — способ однозначной фиксации на письме звуковых характеристик отрезков речи. В зависимости от того, какие …
  • ТРАНСКРИПЦИЯ в Словаре лингвистических терминов:
    (лат. transcriptio — переписывание). 1) Передача звуков иноязычного слова (обычно собственного имени, географического названия, научного термина) при помощи букв …
  • ТРАНСКРИПЦИЯ в Новом словаре иностранных слов:
    (лат. transcriptio переписывание) 1) точная передача всех тонкостей произношения какого-л, языка независимо от его графических и орфографических норм, употребляемая …
  • ТРАНСКРИПЦИЯ в Словаре иностранных выражений:
    [ 1. точная передача всех тонкостей произношения какого-л, языка независимо от его графических и орфографических норм, употребляемая в научных целях; …
  • ТРАНСКРИПЦИЯ в словаре Синонимов русского языка:
    биосинтез, запись, передача, …
  • ТРАНСКРИПЦИЯ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    1. ж. Точная передача условными знаками всех тонкостей произношения какого-л. языка (в лингвистике). 2. ж. 1) Переложение музыкального произведения для …
  • ТРАНСКРИПЦИЯ в Полном орфографическом словаре русского языка:
    транскрипция, …

IV. ТРАНСКРИПЦИЯ

Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции (рис. 4-26).

Рис. 4-26. Схема реализации генетической информации в фенотипические признаки. Реализацию потока информации в клетке можно представить схемой ДНК-"РНК-"белок. ДНК-"РНК обозначает биосинтез молекул РНК (транскрипцию); РНК-"белок означает биосинтез полипептидных цепей (трансляцию).

Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный.принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонукле-озидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) -субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования 3",5"-фосфодиэфирной связи между рибонуклеозидмонофосфатами.

Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции -транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген (рис. 4-27), у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).

Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называетсяматричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте (рис. 4-28).

Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определённом белке.

РНК-полимеразы

Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - олигомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β", σ. Субъединица о (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции, РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.

А. Стадии транскрипции

В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию.

Инициация

Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора -ТАТААА- (ТАТА-бокс) (рис. 4-29).

Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка,

Рис. 4-27. Строение транскриптона.

Рис. 4-28. Транскрипция РНК на матричный цепи ДНК. Синтез РНК всегда происходит в направлении 5" → 3".

Рис. 4-29. Строение промотора эукариотов. Промоторные элементы - специфические последовательности нуклеотидов, характерные для любого промотора, связывающего РНК-полимеразу. Первый промоторный элемент - последовательность АТАТАА- (ТАТА-бокс) отделён от сайта начала транскрипции приблизительно на 25 пар нуклеотидов (п.н.). На расстоянии примерно 40 (иногда до 120) п.н. от него располагается последовательность GGCCAATC- (СААТ-бокс).

в которой матрица доступна для инициации синтеза цепи РНК (рис. 4-30).

После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.

Элонгация

Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5"- к З"-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной

вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3"- к 5"-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

Терминация

Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в

Рис. 4-30. Стадии транскрипции. 1 - присоединение ТАТА-фактора к промотору. Чтобы промотор был узнан РНК-полимера-зой, необходимо образование транскрипционного комплекса ТАТА-фактор/ТАТА-бокс (промотор). ТАТА-фактор остаётся связанным с ТАТА-боксом во время транскрипции, это облегчает использование промотора многими молекулами РНК-полимеразы; 2 - образование транскрипционной вилки; 3 - элонгация; 4.- терминация.

строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

Б. Ковалентная модификация (процессинг) матричной РНК

Первичные транскрипты мРНК, прежде чем будут использованы в ходе синтеза белка, подвергаются ряду ковалентных модификаций. Эти модификации необходимы для функционирования мРНК в качестве матрицы.

Модификация 5"-конца

Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидных остатков, происходит кэпирование его 5"-конца. Осуществляет кэпирование гуанилилтрансфераза. Фермент гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеотиддифосфатный остаток 5"-фосфатной группой к 5"-концу синтезированного фрагмента РНК с образованием 5", 5"-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N 7 -метилгуанозина завершает формирование кэпа (рис. 4-31).

Рис. 4-31. Ковалентная модификация концевых нуклеотидных остатков первичного транскрипта мРНК.

Модифицированный 5"-конец обеспечивает инициацию трансляции, удлиняет время жизни мРНК, защищая её от действия 5"-экзонуклеаз в цитоплазме. Кэпирование необходимо для инициации синтеза белка, так как инициирующие триплеты AUG, GUG распознаются рибосомой только если присутствует кэп. Наличие кэпа также необходимо для работы сложной ферментной системы, обеспечивающей удаление нитронов.

Модификация 3"-конца

3"-Конец большинства транскриптов, синтезированных РНК-полимеразой II, также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность (полиА-"хвост"), состоящая из 100-200 остатков аде-ниловой кислоты.

Сигналом к началу полиаденилирования является последовательность -AAUAAA- на растущей цепи РНК. Фермент полиА-полимераза, проявляя экзонуклеазную активность, разрывает 3"-фосфоэфирную связь после появления в цепи РНК специфической последовательности -AAUAAA-. К 3"-концу в точке разрыва полиА-полимераза наращивает по-лиА-"хвост", Наличие полиА-последовательности на 3"-конце облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме.

Ферменты, осуществляющие кэширование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.

Сплайсинг первичных транскриптов мРНК

С появлением методов, позволяющих изучать первичную структуру молекул мРНК в цитоплазме и последовательность нуклеотидов кодирующей её геномной ДНК, было установлено, что они не комплементарны, а длина гена в несколько раз больше "зрелой" мРНК. Последовательности нуклеотидов, присутствующие в ДНК, но не входящие в состав зрелой мРНК, были названы некодирующими, или интроны, а последовательности, присутствующие в мРНК, - кодирующими, или экзоны. Таким образом, первичный транскрипт - строго комплементарная матрице нуклеиновая кислота (пре-мРНК), содержащая как экзоны, так и интроны. Длина интронов варьирует от 80 до 1000 нуклеотидов. Последовательности интронов "вырезаются" из первичного транскрипта, концы экзонов соединяются друг с другом. Такую модификацию РНК называют "сплайсинг" (от англ, to splice - сращивать). Сплайсинг происходит в ядре, в цитоплазму поступает уже "зрелая" мРНК.

Гены эукариотов содержат больше интронов, чем экзонов, поэтому очень длинные молекулы пре-мРНК (около 5000 нуклеотидов) после сплайсинга превращаются в более короткие молекулы цитоплазматической мРНК (от 500 до 3000 нуклеотидов).

Процесс "вырезания" интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП). В состав мяРНП входит малая ядерная РНК (мяРНК), нуклеотидная цепь которой связана с белковым остовом, состоящим из нескольких протомеров. В сплайсинге принимают участие различные мяРНП (рис. 4-32).

Нуклеотидные последовательности нитронов функционально неактивны. Но на 5"- и З"-концах они имеют высокоспецифические последовательности - AGGU- и GAGG- соответственно (сайты сплайсинга), которые обеспечивают их удаление из молекулы пре-мРНК. Изменение структуры этих последовательностей влияет на процесс сплайсинга.

На первой стадии процесса мяРНП связываются со специфическими последовательностями первичного транскрипта (сайты сплайсинга), далее к ним присоединяются другие мяРНП. При формировании структуры сплайсосомы 3"-конец одного экзона сближается с 5"-концом следующего экзона. Сплайсосома катализирует реакцию расщепления 3",5"-фосфодиэфирной связи на границе экзона с интроном. Последовательность интрона удаляется, а два экзона соединяются. Образование 3",5"-фосфодиэфирной связи между двумя экзонами катализируют мяРНК (малые ядерные РНК), входящие в структуру сплайсосомы. В результате сплайсинга из первичных транскриптов мРНК образуются молекулы "зрелой" мРНК.

Альтернативный сплайсинг первичных транскриптов мРНЕ

Для некоторых генов описаны альтернативные пути сплайсинга и полиаденилирования одного и того же транскрипта. Экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути, поэтому молекулы мРНК, образованные в результате альтернативного сплайсинга, различаются набором экзонов. Это приводит к образованию разных мРНК и, соответственно, разных белков с одного первичного транскрипта. Так, в парафолликулярных клетках щитовидной железы (рис. 4-33) в ходе транскрипции гена гормона кальцитонина (см. раздел 11) образуется первичный транскрипт мРНК, который состоит из шести экзонов. Матричная РНК кальцитонина образуется путём сплайсинга первых четырёх экзонов (1-4). Последний (четвёртый) экзон содержит сигнал полиаденилирования (последовательность -AAUAAA-), узнаваемый полиА-полимеразой в парафолликулярных клетках щитовидной железы. Этот же первичный транскрипт в клетках головного мозга в ходе другого (альтернативного)

Рис. 4-32. Сплайсинг РНК. В процессе сплайсинга принимают участие различные мяРНП, которые формируют сплайсосому. мяРНП, взаимодействуя с РНК и друг с другом, фиксируют и ориентируют реакционные группы первичного транскрипта. Каталитическая функция сплайсосом обусловлена РНК-составляющими; такие РНК называют рибозимами.

Рис. 4-33. Альтернативный сплайсинг гена кальцитонина. В клетках щитовидной железы сплайсинг первичного транскрипта приводит к образованию кальцитониновои мРНК, включающей 4 экзона и полиА-последовательность, которая образуется после расщепления транскрипта в первом участке сигнала полиаденилирования. В клетках мозга образуется мРНК, содержащая: экзоны 1, 2, 3, 5, 6 и полиА-последовательность, образованную после второго сигнала полиаденилирования.

пути сплайсинга превращается в мРНК кальцитонинподобного белка, отвечающего за вкусовое восприятие. Матричная РНК этого белка состоит из первых трёх экзонов, общих с кальцитониновои мРНК, но включает дополнительно пятый и шестой экзоны, не свойственные мРНК кальцитонина. Шестой экзон тоже имеет сигнал полиаденилирования -AAUAAA-, узнаваемый ферментом полиА-полимеразой в клетках нервной ткани. Выбор одного из путей (альтернативный сплайсинг) и одного из возможных сайтов полиаденилирования играет важную роль в тканеспецифической экспрессии генов.

Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка. Разные изоформы тропонина образуются в разных тканях на определённых стадиях их развития.

В. Процессинг первичных транскриптов рибосомной РНК и транспортной РНК

Гены, кодирующие большую часть структурных РНК, транскрибируются РНК-полимера-зами I и III. Нуклеиновые кислоты - предшественники рРНК и тРНК - подвергаются в ядре расщеплению и химической модификации (процессингу).

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

Первичный транскрипт тРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичных транскриптов тРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков (рис. 4-34).

Посттранскрипционные модификации (процессинг) первичного транскрипта рРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичных транскриптов. Первичные транскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Рис. 4-34. Процессинг пре-тРНК. Определённые азотистые основания нукпеотидов тРНК в ходе процессинга метилируются под действием РНК-метилазы и превращаются, например, в 7-метилгуанозин и 2-метилгуанозин (минорные основания). В молекуле тРНК содержатся и другие необычные основания - псевдоуридин, дигидроуридин, которые также модифицируются во время процессинга.

Рис. 4-35. Образование и выход из ядра субъединиц рибосом. В результате процессинга из молекулы предшественника 45S рРНК образуются три типа рРНК: 18S, входящая в состав малой субъединицы рибосом, а также 28S и 5,8S, локализующиеся в большой субъединице. Все три рРНК образуются в равных количествах, так как они происходят из одного и того же первичного транскрипта. 5S рРНК большой субъединицы рибосом транскрибируется отдельно от первичного транскрипта 45S рРНК. Рибосомальные РНК, образованные в ходе посттранскрипционных модификаций, связываются со специфическими белками, и образуется рибосома.

Рибосома - органелла клетки, участвующая в биосинтезе белка. Рибосома эукариотов (80S) состоит из двух, большой и малой, субъединиц: 60S и 40S. Белки рибосом выполняют структурную, регуляторную и каталитическую функции.

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
В процессе транскрипции генов происходит биосинтез молекул РНК, комплементарных одной из цепей матричной ДНК, сопровождаемый полимеризацией четырех рибонуклеозидтрифосфатов (ATP, GTP, CTP и UTP) с образованием 3"–5"-фосфодиэфирных связей и освобождением неорганического пирофосфата.
Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой . Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"
РНК-полимеразы могут состоять из одной или нескальких субъединиц. У митохондрий и некоторых бактериофагов, например SP6, T7 с небольшим числом генов простых геномов, где отсутствует сложная регуляция РНК-полимераза состоит из одной субъединицы. Для бактерий и эукариот, с большим числом генов и сложными системами регуляции РНК-полимеразы состоят из нескольких субъединиц. Показано, что фаговые РНК-полимеразы состоящие из одной субъединицы могут взаиодействовать с белками бактерий, которые меняют их свойства [Патрушев, 2000].
У прокариот синтез всех видов РНК осуществляется одним и тем же ферментом.
У эукариот - 3 ядерные РНК-полимеразы, митохондриальные РНК-полимеразы, хлоропластные РНК-полимеразы.
Субстратами для РНК-полимераз служат рибонуклеозид-трифосфаты (активированные нуклеотиды). Весь процесс транскрипции осуществляется за счет энергии макроэргических связей актвированных нуклеотидов.

Первый нуклеотид в РНК всегда пурин в форме трифосфата.
Факторы транскрипции - белки взаимодействующие с друг другом, регуляторными участками ДНК и РНК-полимеразой с образованием транскрипционного комплекса и регулирующие транскрипцию. Благодаря факторам транскрипции и регуляторным последовательностям генов становится возможным специфический синтез РНК.
Принципы транскрипции
комплиментарность - mRNA комплиментарна матричной цепи ДНК и аналогична кодирующей цепи ДНК
антипараллельность
униполярность
беззатравочность - РНК-полимераза не требует праймера
асимметричность
Стадии транскрипции

  1. распознавание промотора и связывание - РНК-полимераза связывается с ТАТА-боксом 3’-промотора при помощи основных факторов транскрипции, дополнительные факторы ингибируют или стимулируют присоединение
  2. инициация - образование первой фосфодиэфирной связи между Pu и первым нуклеотидом. К пуринтрифосфату присоед нуклеотид комплиментарный второму нуклеотиду ДНК с отщеплением пирофосфата от нуклеозидтрифосфата с образ диэфирной связи
  3. элонгация (3’→5’)- мРНК гомологичная нематричной (кодирующей, смысловой) ДНК, синтезируется на матричной ДНК; какая из двух цепей ДНК будет матрицей, определяется направлением промотора
  4. терминация

Транскрипционные фабрики

Существует ряд экспериментальных данных, свидетельствующих о том, что транскрипция осуществляется в так называемых транскрипционных фабриках: огромных, по некоторым оценкам, до 10 МДа комплексах, которые содержат около 8 РНК-полимераз II и компоненты последующего процессинга и сплайсинга, а также пруф-ридинга новосинтезированного транскрипта. В ядре клетки происходит постоянный обмен между пулами растворимой и задействованной РНК-полимеразы. Активная РНК-полимераза задействована в таком комплексе, который в свою очередь является структурной организовывающей компактизацию хроматина единицей. Последние данные. свидетельствуют о том, что транскрипционные фабрики существуют и в отсутствие транскрипции, они фиксированы в клетке (пока не ясно, взаимодействуют ли они с матриксом клетки или нет) и представляют собой независимый ядерный субкомпартмент. Попытки выделить белковый функциональный комплекс транскрипционной фабрики пока не привели к успеху ввиду его огромных размеров и низкой растворимости.

Реставрация ванн в в Колпино vk.com/restavraciya_vann_kolpino .

Транскрипция. Begin - начало транскрипции, End - конец транскрипции, DNA - ДНК.

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"

Транскрипция состоит из стадий инициации, элонгации и терминации.

Инициация транскрипции

Инициация транскрипции — сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности и от наличия или отсутствия различных белковых факторов.

Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев - переходом РНК-полимеразы в состояние компетентности в отношении элонгации. Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы.

На стадии элонгации в ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади - восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно.

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т.н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

Триптофановый оперон

Транскрипция в биологии - это многоступенчатый процесс считывания информации с ДНК, который является составляющей Нуклеиновая кислота является носителем генетической информации в организме, поэтому важно правильно ее расшифровать и передать другим клеточным структурам для дальнейшей сборки пептидов.

Определение «транскрипция в биологии»

Синтез белка является основным жизненно важным процессом в любой клетке организма. Без создания молекул пептида невозможно поддержание нормальной жизнедеятельности, т. к эти органические соединения участвуют во всех процессах метаболизма, являются структурными компонентами многих тканей и органов, играют сигнальную и регулирующую и защитную роли в организме.

Процесс, с которого начинается биосинтез белка, и есть транскрипция. Биология кратко разделяет его на три этапа:

  1. Инициация.
  2. Элонгация (нарастание цепи РНК).
  3. Терминация.

Транскрипция в биологии - это целый каскад пошаговых реакций, в результате которых на матрице ДНК синтезируются молекулы РНК. Причем таким образом формируются не только информационные рибонуклеиновые кислоты, но также транспортные, рибосомальные, малые ядерные и другие.

Как и любой биохимический процесс, транскрипция зависит от множества факторов. Прежде всего, это ферменты, которые отличаются у прокариот и эукариот. Эти специализированные белки помогают инициировать и проводить реакции транскрипции безошибочно, что важно для качественного получения белка на выходе.

Транскрипция прокариот

Так как транкрипция в биологии - это синтез РНК на матрице ДНК, то в этом процессе главным ферментом является ДНК-зависимая РНК-полимераза. У бактерий существует только один вид таких полимераз для всех молекул

РНК-полимераза по принципу комплиментарности достраивает цепь РНК, используя матричную цепь ДНК. В составе этого фермента есть две β-субъединицы, одна α-субъединица и одна σ-субъединица. Первые две составляющие выполняют функцию образования тела фермента, а остальные две отвечают за удержание фермента на молекуле ДНК и узнавание промотерной части дезоксирибонуклеиновой кислоты соответственно.

Кстати, сигма-фактор служит одним из признаков, по которым распознается тот или иной ген. Например, латинская буква σ с индексом N означает то, что эта РНК-полимераза узнает гены, которые включаются при недостатке азота в окружающей среде.

Траскрипция у эукариот

В отличие от бактерий, у животных и растений транскрипция происходит несколько сложнее. Во-первых, В каждой клетке находятся не один, а целых три вида разных РНК-полимераз. Среди них:

  1. РНК-полимераза I. Она отвечает за транскрипцию генов рибосомальных РНК (исключение составляет 5S РНК субъединицв рибосомы).
  2. РНК-полимераза II. Ее задача состоит в синтезе нормальных информационных (матричных) рибонуклеиновых кислот, которые в дальнейшем участвуют в трансляции.
  3. РНК-полимераза III. Функция этого вида полимераз заключается в том, чтобы синтезировать а также 5S-рибосомальную РНК.

Во-вторых, для узнавания промотора у эукариотических клеток недостачно иметь только полимеразу. В инициации транскрипции также участвуют специальные пептиды, которые называются TF-белками. Только с их помощью РНК-полимераза может сесть на ДНК и начать синтез молекулы рибонуклеиновой кислоты.

Значение транскрипции

Молекула РНК, которая образуется на матрице ДНК, впоследствии присоединяется к рибосомам, где с нее считывается информация и синтезируется белок. Процесс образования пептида очень важен для клетки, т.к. без этих органических соединений невозможна нормальная жизнедеятельность: они в первую очередь являются основой для важнейших ферментов всех биохимических реакций.

Транскрипция в биологии - это еще и источник рРНК, которые а также тРНК, которые участвуют в переносе аминокислот во время трансляции к этим немембранным структурам. Также могут синтезироваться мяРНК (малые ядерные), функция которых заключается в сплайсинге всех молекул РНК.

Заключение

Трансляция и транскрипция в биологии играют исключительно важную роль в синтезе белковых молекул. Эти процессы являются основной составляющей центральной догмы молекулярной биологии, которая гласит о том, что на матрице ДНК синтезируется РНК, а РНК, в свою очередь, является основой для начала формирования молекул белка.

Без транскрипции невозможно было бы считать информацию, которая закодирована в триплетах дезоксирибонуклеиновой кислоты. Это еще раз доказывает важность процесса на биологическом уровне. Любая клетка, будь она прокариотическая или эукариотическая, должна постоянно синтезировать новые и новые молекулы белка, которые нужны в данный момент для поддержания жизнедеятельности. Поэтому транскрипция в биологии - это основной этап в работе каждой отдельной клетки организма.

Понравилось? Лайкни нас на Facebook