Задачи обработки радиолокационной информации. Радиолокационной информации Третичная обработка радиолокационной информации алгоритмы

Обработка радиолокационной информации - процесс приведения получаемой с РЛС информации в пригодный для дальнейшей передачи вид.

Изначально обработка радиолокационной информации проводилась сидящим за индикатором РЛС солдатом (оператором сопровождения). В настоящее время она проводится автоматически и полуавтоматически, повышая производительность труда оператора.

Первичная обработка

Суть: выделение целей на фоне шумов и помех, опознавание «свой-чужой»

Вход: сигнал РЛС.

Выход: положение целей, их угловой размер, азимут и расстояние.

Проводится: устройством первичной обработки, находящимся в РЛС; ранее - пунктами обработки радиолокационной информации.

Вторичная обработка

Суть: отождествление целей в течение нескольких циклов сканирования РЛС; вычисление направления и скорости; борьба с ошибками первичной обработки - двойными целями, случайными всплесками и временными пропаданиями целей.

Вход: цели, полученные первичной обработкой.

Проводится: оператором сопровождения вручную; пунктом обработки радиолокационной информации (на уровне радиолокационной роты) полу- и автоматически.

Третичная обработка

Суть: сопоставление информации, полученной с нескольких источников.

Вход: трассы целей, полученные в результате вторичной обработки; координаты РЛС.

Выход: трассы целей, полученные с учётом передачи цели с одной РЛС другой, точности разных источников и т. д.

Проводится: на уровне радиотехнического батальона и выше; вручную (планшетистом), полуавтоматически или автоматически АСУ.


Wikimedia Foundation . 2010 .

Смотреть что такое "Обработка радиолокационной информации" в других словарях:

    ОРЛИ - обработка радиолокационной информации связь … Словарь сокращений и аббревиатур

    В Википедии есть статьи о других людях с такой фамилией, см. Бененсон. Залман Михайлович Бененсон Дата рождения … Википедия

    У этого термина существуют и другие значения, см. Искра. Координаты: 47°50′16″ с. ш. 35°13′47″ в. д. / 47.837778° с. ш. 35.229722° в. д. … Википедия

    Крылатая противокорабельная ракета П-35 (П-6) - 1964 17 августа 1956 года вышло Постановление СМ CCCH № 1149–592 о начале разработки противокорабельных крылатых ракет П 6 и П 35. Обе ракеты проектировались в ОКБ 52 и мало отличались друг от друга. П 6 предназначалась для подводных… … Военная энциклопедия

    Комплекс мероприятий по получению и обработке данных о действующем или вероятном противнике, его военных ресурсах, боевых возможностях и уязвимости, а также о театре военных действий. Классификация. Современная военная разведка делится на… … Энциклопедия Кольера

    Ракета AIM 120 Тип ракета класса «воздух воздух» … Википедия

    Изучения 3емли, совокупность методов исследования и картирования с летательных аппаратов географической оболочки Земли, присущих ей явлений и объектов природного и культурного ландшафта. Их физические свойства могут регистрироваться с… …

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Виктор Филиппович Кравченко Дата рождения: 5 октября 1939(1939 10 05) (73 года) Место рождения: Харьков, Украина, СССР Страна … Википедия

    I Импульсная техника область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов (см. Импульс электрический). В И. т. также… … Большая советская энциклопедия

Обработка радиолокационной информации - процесс приведения получаемой с РЛС информации в пригодный для дальнейшей передачи вид.

Первоначально обработка радиолокационной информации осуществлялась оператором РЛС, который наблюдал за воздушной обстановкой на экране индикатора кругового обзора (ИКО). В простейшем случае на ИКО выводилась информация с выхода приемного устройства РЛС, а люминофор ИКО (который представлял собой электронно-лучевую трубку ЭЛТ с радиально-круговой разверткой, РКР) осуществлял интегрирование радиолокационной информации. По мере развития вычислительных средств появились возможности добавления функции полуавтоматического сопровождения (полуавтомат), а впоследствии и автозахвата (автомат). В полуавтомате оператор вручную завязывал трассу цели и дальше машина обрабатывала информацию самостоятельно и только лишь при необходимости запрашивая помощи у оператора. В автомате машина самостоятельно осуществляет не только сопровождение, но и завязку трасс. Однако возможности вычислительных средств не позволяют полностью отказаться от оператора - в сложной помеховой обстановке существующие алгоритмы значительно снижают свои показатели вплоть до неработоспособности.

Первичная обработка

Обработка эхо-сигнала (в активных РЛС с пассивным ответом) или активного ответа (в системах активного запроса-ответа, САЗО, опознавание «свой-чужой») с целью выделения полезной информации на фоне естественных и искусственных помех

Вход: сигнал с приемника, антенно-фидерной системы (АФС) РЛС.

Выход: положение целей, их угловой размер, азимут и расстояние.

Проводится: устройством первичной обработки (УПО), находящимся в РЛС;

Вторичная обработка

Предназначена для формирования трасс целей на основе данных с УПО. На основе данных первичной обработки осуществляется экстраполяция положения целей - определение их курса, скорости и высоты и прогнозирование положения цели в следующем периоде обзора. В процессе вторичной обработки повышается устойчивость сопровождения целей (цель экстраполируется несколько периодов обзора после пропадания цели, что позволяет сопровождать цели с неустойчивой отметкой. Также осуществляет отбрасывание ложных целей и трасс. Первоначально в момент появления вторичная обработка осуществлялась с помощью комплексов средств автоматизации автоматизированной системы управления (КСА АСУ), современные РЛС самостоятельно осуществляют данную обработку, при этом при необходимости обработка может быть перенесена на КСА по команде его оператора.

Вход: цели, полученные первичной обработкой.

Выход: номера целей, координаты, скорость, курс, высота, а также другие характеристики в зависимости от РЛС. Результаты вторичной обработки пригодны для выдачи информации потребителям (зенитно-ракетным войскам и истребительной авиации), также применяются для управления другими радиолокационными средствами, например радиовысотомером .

Проводится: оператором сопровождения вручную; КСА АСУ или ПОРИ - пунктом обработки радиолокационной информации (на уровне радиолокационной роты) полу- и автоматически.

Третичная обработка

Суть: сопоставление информации, полученной от нескольких источников.

Вход: трассы целей, полученные в результате вторичной обработки от различных источников РЛС, координаты источников РЛИ и их характеристики.

С помощью математических методов информация уточняется и дополняется, повышается полнота данных и устойчивость сопровождения целей, а также оптимизируется работа группировки радиолокационных средств с целью получения РЛИ максимального качества с минимальным расходом ресурсов с учетом обстановки и используемых средств. Выход: трассы целей, полученные с учётом передачи цели с одной РЛС другой, точности разных источников и т. д.

Проводится: на уровне радиотехнического батальона и выше; вручную, полуавтоматически или автоматически АСУ офицером группы боевого управления или по его команде оператором.

Напишите отзыв о статье "Обработка радиолокационной информации"

Отрывок, характеризующий Обработка радиолокационной информации

Он никого не знал, и, несмотря на его щегольской гвардейский мундир, все эти высшие люди, сновавшие по улицам, в щегольских экипажах, плюмажах, лентах и орденах, придворные и военные, казалось, стояли так неизмеримо выше его, гвардейского офицерика, что не только не хотели, но и не могли признать его существование. В помещении главнокомандующего Кутузова, где он спросил Болконского, все эти адъютанты и даже денщики смотрели на него так, как будто желали внушить ему, что таких, как он, офицеров очень много сюда шляется и что они все уже очень надоели. Несмотря на это, или скорее вследствие этого, на другой день, 15 числа, он после обеда опять поехал в Ольмюц и, войдя в дом, занимаемый Кутузовым, спросил Болконского. Князь Андрей был дома, и Бориса провели в большую залу, в которой, вероятно, прежде танцовали, а теперь стояли пять кроватей, разнородная мебель: стол, стулья и клавикорды. Один адъютант, ближе к двери, в персидском халате, сидел за столом и писал. Другой, красный, толстый Несвицкий, лежал на постели, подложив руки под голову, и смеялся с присевшим к нему офицером. Третий играл на клавикордах венский вальс, четвертый лежал на этих клавикордах и подпевал ему. Болконского не было. Никто из этих господ, заметив Бориса, не изменил своего положения. Тот, который писал, и к которому обратился Борис, досадливо обернулся и сказал ему, что Болконский дежурный, и чтобы он шел налево в дверь, в приемную, коли ему нужно видеть его. Борис поблагодарил и пошел в приемную. В приемной было человек десять офицеров и генералов.
В то время, как взошел Борис, князь Андрей, презрительно прищурившись (с тем особенным видом учтивой усталости, которая ясно говорит, что, коли бы не моя обязанность, я бы минуты с вами не стал разговаривать), выслушивал старого русского генерала в орденах, который почти на цыпочках, на вытяжке, с солдатским подобострастным выражением багрового лица что то докладывал князю Андрею.
– Очень хорошо, извольте подождать, – сказал он генералу тем французским выговором по русски, которым он говорил, когда хотел говорить презрительно, и, заметив Бориса, не обращаясь более к генералу (который с мольбою бегал за ним, прося еще что то выслушать), князь Андрей с веселой улыбкой, кивая ему, обратился к Борису.
Борис в эту минуту уже ясно понял то, что он предвидел прежде, именно то, что в армии, кроме той субординации и дисциплины, которая была написана в уставе, и которую знали в полку, и он знал, была другая, более существенная субординация, та, которая заставляла этого затянутого с багровым лицом генерала почтительно дожидаться, в то время как капитан князь Андрей для своего удовольствия находил более удобным разговаривать с прапорщиком Друбецким. Больше чем когда нибудь Борис решился служить впредь не по той писанной в уставе, а по этой неписанной субординации. Он теперь чувствовал, что только вследствие того, что он был рекомендован князю Андрею, он уже стал сразу выше генерала, который в других случаях, во фронте, мог уничтожить его, гвардейского прапорщика. Князь Андрей подошел к нему и взял за руку.
– Очень жаль, что вчера вы не застали меня. Я целый день провозился с немцами. Ездили с Вейротером поверять диспозицию. Как немцы возьмутся за аккуратность – конца нет!
Борис улыбнулся, как будто он понимал то, о чем, как об общеизвестном, намекал князь Андрей. Но он в первый раз слышал и фамилию Вейротера и даже слово диспозиция.
– Ну что, мой милый, всё в адъютанты хотите? Я об вас подумал за это время.
– Да, я думал, – невольно отчего то краснея, сказал Борис, – просить главнокомандующего; к нему было письмо обо мне от князя Курагина; я хотел просить только потому, – прибавил он, как бы извиняясь, что, боюсь, гвардия не будет в деле.
– Хорошо! хорошо! мы обо всем переговорим, – сказал князь Андрей, – только дайте доложить про этого господина, и я принадлежу вам.

Введение

Основной задачей радиолокации является сбор и обработка информации относительно зондируемых объектов. В многопозиционных наземных РЛС, как известно, вся обработка радиолокационной информации подразделяется на три этапа.

Первичная обработка заключается в обнаружении сигнала цели и измерении ее координат с соответствующими качеством или погрешностями.

Вторичная обработка предусматривает определение параметров траектории каждой цели по сигналам одной или ряда позиций МПРЛС, включая операции отождествления отметок целей.

При третичной обработке объединяются параметры траекторий целей, полученных различными приемными устройствами МПРЛС с отождествлением траекторий.

Поэтому рассмотрение сущности всех видов обработки радиолокационной информации является весьма актуальным.

Для достижения поставленных целей рассмотрим следующие вопросы:

1. Первичная обработка радиолокационной информации.

2. Вторичная обработка радиолокационной информации.

3. Третичная обработка радиолокационной информации.

Данный учебный материал можно найти в следующих источниках:

1. Бакулев П.А. Радиолокационные системы: Учебник для вузов. – М.:

Радиотехника, 2004.

2. Белоцерковский Г.Б. Основы радиолокации и радиолокационные

устройства. – М.: Советское радио, 1975.

  1. Первичная обработка радиолокационной информации

Для автоматизации процессов управления авиацией необходимо иметь

исчерпывающую и непрерывно обновляющуюся информацию о координатах и характеристиках воздушных целей. Эту информацию в автоматизированных системах управления (АСУ) получают с помощью средств, входящих в подсистему сбора и обработки радиолокационной информации (РЛИ), а именно: постов и центров обработки РЛИ, авиационных комплексов радиолокационного дозора и наведения. Основными средствами получения сведений о воздушных целях являются РЛС. Процесс получения сведений об объектах, находящихся в зоне видимости РЛС, называется обработкой РЛИ.

Такая обработка позволяет получать данные о координатах цели, параметрах ее траектории, времени локации и др. Совокупность сведений о цели условно называют отметкой . В состав отметок, кроме указанных выше данных, могут входить сведения о номере цели, ее государственной принадлежности, количестве, типе, важности и др.

Сигналы, которые несут необходимую для оператора информацию, называют полезными, но на них, как правило, обязательно накладываются помехи, искажающие информацию. В связи с этим в процессе обработки возникают задачи выделения полезных сигналов и получения необходимых сведений в условиях помех.

Обработка информации основывается на существовании различий между полезным сигналом и помехой. Весь процесс обработки РЛИ можно разделить на три основных этапа: первичную, вторичную и третичную обработку.

На этапе первичной обработки РЛИ цель обнаруживают и определяют ее координаты. Первичная обработка осуществляется по одной, но чаще по нескольким смежным разверткам дальности. Этого хватает для обнаружения цели и определения ее координат. Таким образом, первичной обработкой РЛИ называется обработка информации за один период обзора РЛС. В состав первичной обработки РЛИ включают:

Обнаружение полезного сигнала в шумах;

Определение координат цели;

Кодирование координат цели;

Присвоение номеров целям.

До недавнего времени эту задачу решал оператор РЛС. Но в настоящее время в реальных условиях слежения по индикаторам за многими целями, движущимися с большими скоростями, человек – оператор не в состоянии оценивать многообразие воздушной обстановки, пользуясь только визуальным способом. В связи с этим возникла проблема передачи части или всех функций человека – оператора при обработке РЛИ вычислительным средствам, которые были созданы на объектах АСУ авиацией.

Первичная обработка РЛИ начинается с обнаружения полезного сигнала вшумах. Этот процесс складывается из нескольких этапов:

Обнаружение одиночного сигнала;

Обнаружение пакета сигналов;

Формирование полного пакета сигналов;

Определение дальности до цели и ее азимута.

Все эти этапы реализуются с использованием оптимальных алгоритмов, основанных на критериях минимума ошибок принятия решения и результатов измерения.

Таким образом, операции, производимые при первичной обработке, может производить РЛС самостоятельно.

ГЛАВА I

Пространственно-временная обработка

радиолокационной информации

1.1. Принципы получения радиолокационной информации

Получение радиолокационной информации базируется на следующих ос­новных принципах.

1. Информация получается путем возмущения среды распространения различ­ными объектами, в частности за счет излучения объектом радиоволн.

2. Для получения необходимой информации учитываются и используются ре­альные закономерности распространения радиоволн в пространстве.

3. Выделение слабых сигналов, приходящих от объектов, и разрешение объек­тов обеспечивается за счет различий сигналов и помех, а также сигналов от разных объектов между собой.

4. Информация об объектах получается параллельно или последовательно во времени и выдается в виде информационных потоков.

К видам излучения относятся: вторичное излучение, переизлучение и собственное излучение радиоволн. В первых двух случаях радиолокатор излу­чает в направлении на объект мощный сигнал (зондирующий сигнал); в по­следнем случае облучения объекта не требуется. Радиолокация с использовани­ем вторичного излучения и переизлучения называется активной, а радиолока­ция с использованием собственного излучения - пассивной.

Радиолокация с пассивным ответом основана на том, что радиолокацион­ная станция (РЛС) излучает электромагнитные колебания, которые отражаются от объекта и попадают в приемник в виде отраженного сигнала. Важным требо­ванием к объектам в этом случае является отличие их отражающих свойств от отражающих свойств окружающей среды. Явление вторичного излучения по­зволяет обнаружить объекты, не являющиеся источниками собственных радио­излучений или переизлучений (рис. 1.1, а).

Радиолокация с активным ответом (рис. 1.1, б), именуемая иногда как вторичная радиолокация (в первом случае радиолокация первичная), характеризуется тем, что ответный сигнал является не отраженным, а переизлученным с помощью специальных средств (ответчики - ретрансляторы). При этом зна­чительно повышается дальность и контрастность радиолокационного наблюде­ния, улучшается помехоустойчивость. Данный метод широко применяется для определения государственной принадлежности воздушных судов (с помощью специальных кодов). В гражданской авиации метод активного ответа использу­ется весьма широко, так как с его помощью можно получить много дополни­тельной полетной информации (номер борта, высота полета и др.).

Системы активной радиолокации могут быть совмещенными и разнесен­ными. В совмещенном радиолокаторе передающее и приемное устройство рас­полагаются совместно, при этом возможно поочередное использование одной и той же антенны на передачу и прием.

В разнесенной системе передающее и приемное устройства располагают­ся на определенном удалении друг от друга.

Пассивная радиолокация основана на приеме собственного радиоизлуче­ния объектов (рис. 1.1, в). Электромагнитные колебания создаются элементами объекта: его нагретыми частями (тепловое излучение в диапазоне инфракрас­ных или миллиметровых волн), радиотехническими устройствами связи, нави­гации, локации, радиопротиводействия, а также колеблющимися частицами ио­низированных участков атмосферы в окрестности объекта. Прием может осу­ществляться одним или несколькими разнесенными приемными устройствами.

При определении координат воздушных объектов в любой радиолокаци­онной системе используются определенные закономерности распространения радиоволн. Ограничимся случаем распространения радиоволн в свободном пространстве, которое является однородным, изотропным и недиспергирующим. Для всех точек такого пространства скорость распространения радиоволн одинакова, не зависит от поляризации волны и частоты колебаний (c=3*10 8 м/сек). При этом зондирующий и отраженный сигналы распростра­няются по прямолинейной траектории и без искажения своей формы. Время запаздывания Г 3 отраженного сигнала относительно зондирующего (рис. 1.2) для разнесенной системы определяется соотношением

Концентрация излучаемой энергии в ка­ком-то одном направлении и направленный прием обеспечивают существенное увеличение дальности радиолокации. Появляется возможность измерять угло­вые координаты воздушных объектов - азимут и угол места, например, по мак­симуму отраженного сигнала, а также разрешать объекты по угловым коорди­натам (рис. 1.3).

Ширина диаграммы направленности антенны радиолокатора определяется со­отношением ее геометрических размеров к длине волны. Поэтому высокие на­правленные свойства обеспечиваются за счет увеличения размеров антенны и использования дециметрового, сантиметрового и миллиметрового диапазона волн.

Даже при остронаправленном облучении объекта от его поверхности от­ражается незначительная часть излучаемой энергии. Еще в большей степени рассеяние энергии проявляется на пути от объекта до приемной антенны в силу слабой направленности вторичного излучения. Приходящие сигналы, особенно на больших дальностях, оказываются слабыми и необходимо принимать меры для их выделения на фоне помех и шумов. К числу таких мер относятся: увели­чение средней мощности сигналов передатчиков, габаритов антенн, примене­ние малошумящих приемников. Должна предусматриваться такая обработка смеси слабых сигналов и помех, при которой обеспечивается наилучшее ис­пользование взаимных различий сигнала и помех.

Большинство современных радиолокаторов формируют поток информа­ции об объектах в участке пространства, содержащем большое число разре­шаемых объемов. При этом могут использоваться принципы последовательно­го, параллельного или параллельно-последовательного составления потока ин­формации.

Принцип последовательного обнаружения объектов радиолокатором с лучом игольчатого типа наглядно изображен на рис. 1.4. Закон перемещения луча может быть различным, например, по спирали.

Путем создания пучка игольчатых лучей (рис. 1.5) реализуется принцип параллельного получения нескольких потоков информации. Каждому из лучей необходим свой приемник.

Если по одной из угловых координат (углу места) поток информации по­лучается параллельно, а по другой (азимуту) - последовательно, имеет место параллельно-последовательное составление потока информации.

Последовательные, параллельные и параллельно-последовательные пото­ки информации могут быть образованы также с помощью двух и более разде­ленных радиолокаторов. Например, радиодальномеры с диаграммой, изобра­женной на рис. 1.6 сплошной линией, образуют последовательный поток ин­формации об азимуте объектов. Специальные радиолокаторы (высотомеры) с узкой диаграммой направленности в вертикальной плоскости (пунктир на рис. 1.6) производят последовательный обзор по углу места и определяют высо­ту объектов на тех азимутах, где они обнаружены дальномером.

Для объединение и обработки информации нескольких радиолокаторов могут создаваться радиолокационные узлы (рис. 1.7). Несколько радиолокаци­онных узлов, обменивающихся информацией, образуют радиолокационную систему (рис. 1.8).

Средства радиолокации широко используются для решения задач радио­навигации, связанных с определением местоположения воздушных судов и других движущихся объектов. На рис. 1.9 изображено местоположение объекта Ц в пространстве, которое может быть отображено в сферической системе ко­ординат (D, β, ε) либо в цилиндрической системе координат (D г,β, Н).

На рисунке обозначено: D - наклонная дальность (или просто дальность); Dp - горизонтальная дальность; ft - азимут (угол между направлением на север и проекцией направления на объект в горизонтальной плоскости, отсчитываемой по часовой стрелке); £ - угол места (угол между проекцией направления на объект в горизонтальной плоскости и направлением на объект); Н - высота объекта.

Для радиолокации характерно, что весь процесс определения координат производится из одной точки (на рисунке точка О). Исключение составляют разнесенные радиолокационные системы. Непосредственно определяемыми координатами являются D, Д е. При этом можно считать, что объект Ц распо­ложен в точке пересечения трех поверхностей: сферы радиусом D и двух плос­костей (вертикальной, проходящей через точку Ц и наклонной, расположенной под углом s к горизонту). Эти поверхности являются геометрическим местом точек пространства, в которых данный измеряемый параметр постоянен, и на­зываются поверхностями положения. В навигации используются следующие методы определения местоположения объектов: дальномерный, основанный на измерении дальностей от двух различных точек (линия положения - окружно­сти); угломерный (пеленгационный), когда пеленгаторы, расположенные в раз­личных точках, определяют направления (линии положения - прямые); дальномерно-угломерный; разностно-дальномерный, когда измеряется разность расстояний от двух точек (линии положения - гиперболы) и др.

1.2. Пространственно-временная обработка

Радиолокационная информация об объектах содержится в пространственно-временном сигнале (ПВС), отраженном или излученном объектами. Ра­диолокационная информация извлекается из ПВС путем его пространственно-временной обработки, отражающей две формы существования поля. Векторное электромагнитное поле (в отличие от скалярного) характеризуется пространст­венно-временной и поляризационной структурой, поэтому пространственно-временная обработка сигнала включает три компоненты: временную, простран­ственную и поляризационную.

Следует различать принципы, способы, схемотехнику и язык описания пространственно-временной обработки сигнала.

Принципы пространственно-временной обработки сигнала сводятся к совокупности следующих трех доказанных ранее положений.

Во-первых, пространственно-временная обработка сигнала делится на два этапа: этап подавления помехи и этап выделения сигнала.

Во-вторых, подавление помехи осуществляется путем пространственно-временного дифференцирования или спектральной режекции по всему пространству наблюдения.

В-третьих, выделение сигнала осуществляется путем когерентного про­странственно-временного интегрирования или спектральной фильтрации на оп­ределенном интервале пространства наблюдения и последующего некогерент­ного пространственно-временного интегрирования на оставшемся интервале пространства наблюдения.

Способы пространственно-временной обработки сигнала: корреляцион­ный и фильтровой (возможно их сочетание). Корреляционный способ обработки предполагает наличие опорного сигнала (прообраза принятого), перемножение опорного и принятого сигналов и интегрирование (по каждому элементу раз­решения пространства наблюдения). Фильтровой способ обработки предполагает наличие одного пространственно-временного фильтра, импульсная харак­теристика которого согласована с пространственно-временной структурой сиг­нала и который обладает многомерной инвариантностью (в общем случае - ко времени запаздывания, угловому положению цели и доплеровскому смещению частоты). Оба способа обработки приводят к формированию корреляционного интеграла, модульное значение которого однозначно связано с отношением правдоподобия. Многоканальность в сочетании с простотой каждого канала при корреляционной обработке и сложность одного (единственного) простран­ственно-временного фильтра с многомерной инвариантностью при фильтровой обработке - главные привлекательные и отпугивающие характеристики этих способов.

Схемотехника, используемая для реализации корреляционного и фильт­рового способов обработки сигнала, может быть аналоговой, цифровой и опти­ческой.

Существует 2 языка описания пространственно-временного сигнала и пространственно-временной обработки - пространственно-временной и спек­тральный. Пространственно-временной язык адекватно отражает две формы существования материального мира с привычными пространственно-временными координатами х, у, z, ?, состоящего из вещества и поля, в котором мы живем. Спектральный язык, в основе которого лежит преобразование Фурье пространственно-временного процесса, описывает процессы, явления и свойст­ва материального мира в мерности другого - спектрального пространства с ко­ординатами со*, (£> у, co z , со, являющимися пространственными и временной час­тотами. Спектральный язык - это искусственный язык, нашедший в силу ряда удобств широкое распространение, особенно в радиотехнике, оптике, акустике.

Например, сформулированные выше принципы пространственно-временной обработки сигнала изложены на двух языках. Так, принцип подавления помехи на пространственно-временном языке сформулирован как про­странственно-временное дифференцирование, а на спектральном - как спек­тральная режекция. Принцип выделения сигнала на пространственно-временном языке сформулирован как пространственно-временное интегриро­вание, а на спектральном - как спектральная фильтрация.

Пространственно-временная обработка принятого сигнала является осно­вой решения всех задач радиолокационного наблюдения: обнаружения, распо­знавания, измерения, а, следовательно, основой получения всей радиолокаци­онной информации (о наличии или отсутствии цели, о классе или типе цели, о координатах и параметрах движения цели). Действительно, сформировав отно­шение правдоподобия или любую иную величину, однозначно с ним связан­ную, и испытав их на порог, можно принять решения о наличии или отсутствии цели по всем элементам разрешения пространства наблюдения с показателями качества F и D гарантирующими минимальный средний риск, т.е. решить зада­чу обнаружения.

Аналогичным образом сформировав в результате пространственно-временной обработки сигнала отношение правдоподобия по каждому элементу пространства распознавания и обеспечив тем самым получение радиолокаци­онного портрета целей как распределения комплексных амплитуд принятого сигнала по всем элементам пространства распознавания, осуществив в даль­нейшем М-канальную обработку портретов в соответствии с заложенными в эти каналы априорными сведениями об М классах распознаваемых целей, срав­нив результаты обработки и выбрав большее, можно принять решение о классе распознаваемой цели с показателями качества D K , F K , гарантирующими мини­мальный средний риск решения в условиях многоальтернативного выбора, т.е. решить задачу распознавания. И, наконец, сформировав отношение правдопо­добия и подобрав тем или иным способом такое значение измеряемого пара­метра, при котором отношение правдоподобия максимально, можно измерить координату или параметр движения цели с минимальной ошибкой, т.е. решить задачу измерения.

Таким образом, осуществляя полную пространственно-временную обра­ботку принятого сигнала и решая на этой основе задачи обнаружения, измерения, распознавания, можно получить необходимую радиолокационную инфор­мацию о целях.

1.3. Пространственно-временная обработка радиолокационной информации

Обработка радиолокационной информации предполагает объединение не на уровне сигналов, а на уровне первичной информации, т.е. единичных реше­нии о наличии и классе целей и единичных (разовых) оценок координат и па­раметров движения целей.

Пространственно-временная обработка включает: первичную обработку сигнала, вторичную и третичную обработку информации.

Под первичной обработкой подразумевается обработка принятого сиг­нала в одном пункте приема за один радиолокационный контакт с целью. Та­ким образом, такая обработка ограничена по пространству и по времени. Про­странство ограничено размерами антенной системы (единицы метров), а время - временем наблюдения (единицы - десятки миллисекунд). При этом с опреде­ленным качеством (вероятностями правильных и ложных решений, ошибками измерения) могут решаться все задачи радиолокационного наблюдения (обна­ружение, измерение, распознавание). Такую обработку сигнала принято назы­вать первичной, а извлекаемую из принятого сигнала в результате ограничен­ной по пространству и времени обработки информацию - первичной радиоло­кационной информацией, подразумевая под ней единичные решения о наличии или отсутствии целей, о классе целей, единичные оценки-замеры координат или параметров движения целей.

Как правило, в каждом пункте наблюдения к цели обращаются не один раз, а многократно. Если первичную информацию о целях объединить во времени за несколько циклов обращения к цели, то качество радиолокационной информации улучшится. Процесс объединения во времени первичной радиоло­кационной информации принято называть вторичной обработкой радиолока­ционной информации. В результате объединения во времени единичных ре­шений о наличии или отсутствии цели в том или ином элементе разрешения пространства наблюдения улучшаются характеристики обнаружения, а в ре­зультате объединения во времени единичных решений о классе цели улучша­ются характеристики распознавания. Объединением во времени единичных оценок-замеров координат и параметров движения цели уменьшаются ошибки измерения. Вторичная обработка позволяет уменьшить влияние естественных и искусственных помех, расширить объем получаемой информации путем вы­числения скорости и курса объектов или его траектории. Способы объединения во времени первичной информации и его характеристики составляют содержа­ние проблемы вторичной обработки радиолокационной информации.

Если радиолокационная система состоит из нескольких пунктов наблюдения (приема), то первичную информацию о целях можно объединить не только по времени, но и по пространству. При этом качество радиолокационной информации улучшится. Процесс объединения по пространству первичной (или вторичной) информации о целях принято называть третичной обработкой ра­диолокационной информации. Третичная обработка тоже приводит к улуч­шению характеристик обнаружения, распознавания и измерения.

Следует отметить, что первичная обработка сигнала (из одного пункта за время наблюдения) в сочетании с вторичной и третичной обработкой информа­ции не эквивалентна полной пространственно-временной обработке сигнала. Дело в том, что вторичная и третичная обработка первичной РЛИ заранее пре­допределяет некогерентное пространственно-временное объединение результа­тов первичной обработки. Типичными примерами такого объединения являют­ся АСУ воздушным движением ГА, основу которых составляют группировки некогерентных по времени и по пространству РЛС.

Однако в общем случае при многопозиционном построении радиолокационной системы с взаимной привязкой (позиций) не только по времени, но и по частоте и по фазе результаты первичной обработки сигналов, разделенные по времени и пространству, могут иметь корреляционные связи, которые долж­ны быть использованы при полной пространственно-временной обработке сиг­нала.

На рис. 1.10 изображена классификация пространственно-временной об­работки информации.

1.4. Физический смысл пространственно-временной обработки сигналов на фоне помех в адаптивных антенных решетках

Реализация адаптивных методов в радиолокации стала возможной в связи с появлением и интенсивным развитием антенных решеток. Чтобы правильно понимать и оценивать возможности таких адаптивных РЛС, необходимо рас­смотреть особенности обработки сигналов в антенных решетках и формирова­ние ими диаграмм направленности.

На рис. 1.11, а изображена диаграмма направленности (ДН) решетки, со­держащей 8 элементов в полярных координатах. Она формируется в результате весового суммирования напряжений отдельных элементов решетки на частоте . Если теперь обеспечить задержку во времени выходных сигналов от отдель­ных элементов, как это показано на рис. 1.11, б, то в результате главный лепе­сток ДН повернется на угол , где с-скорость распростране­ния сигналов в среде, d - расстояние между элементами антенной решетки,

Относительный сдвиг фазы между соседними элементами решетки.

Рис. 1.11. Диаграммы направленности 8-элементной антенной решетки:

а - исходная, б - для приема сигналов при отклонении ДН от нормали к плоскости решетки

Изменяя величины задержки выходных сигналов во времени от от­дельных элементов, можно обеспечить электрическое управление главным лепестком ДН в заданном угловом секторе.

Отношение сигнал-шум на выходе антенной решетки уменьшается при попадании на ее элементы мешающих сигналов по главному и боко­вым лепесткам. Отношение сигнал-шум падает также из-за изменения пространственных положений источников помех во времени, неудачного расположения антенной системы, а также из-за движения луча. Сказанное иллюстрирует рис. 1.12, а, где показана та же антенная решетка, что и на


Помехи \


Помела \


Рис. 1.12. Диаграмма направленности 8-элементной антенной решетки при воздействии

одного источника помехи:

а - исходная, б - с нулем, сформированным в направлении на источник помехи

рис. 1.11, а, но с направления, указанного пунктиром поступает помеховый сиг­нал с частотой . Он принимается по одному из боковых лепестков ДН. И если его мощность достаточно велика, то мощность помех на выходе решетки может оказаться сравнимой или даже существенно больше мощности полезного сигнала. Это может привести к потере работоспособности РЛС с такой антен­ной системой, если не будут приняты специальные меры. Они могут заклю­чаться в том, например, чтобы выставить весовые коэффициенты решетки так, как указано на рис. 1.12, б. При этом ДН решетки на частоте изменится сле­дующим образом. Боковой лепесток, максимум которого ранее совпадал с на­правлением на источник помехи, сместится так, что направление нулевого приема совпадет с направлением на источник помехи. Главный лепесток ДН изменится при этом незначительно. Таким образом, будет существенно сниже­на чувствительность решетки по отношению к сигналу и помехе. Можно подобрать значения весовых коэффициентов решетки так, чтобы образовать зоны нулевого приема в направлениях на несколько источников помех. Но для этого необходимо заранее знать их угловые положения. В реальных условиях такой информации обычно нет, поэтому стремятся построить адаптивные системы, которые автоматически выставляют нули в направлениях воздействия источни­ков помех. Прежде чем перейти к описанию такого рода систем, которые полу­чили название адаптивных антенных решеток, кратко рассмотрим их различные схемы построения. По своей структуре все адаптивные антенные решетки представляют собой весовые сумматоры (рис. 1.13). В фильтре, предназначен­ном для обработки узкополосных процессов (рис. 1.13, а), каждый элемент ре­шетки соединен с переменным весовым умножителем и с фазовращателем (на 90°). К его выходу подключен второй умножитель. Сигналы с выходов умно­жителей суммируются. Такая решетка обеспечивает линейную обработку узко­полосных процессов. Если необходимо обрабатывать помехи и сигналы в ши­роком диапазоне частот, то все фазовращатели необходимо заменить линиями задержки с отводами.

Рис. 1.13. Виды адаптивных антенных решеток без цепей автоподстройки весовых коэффициентов для приема узкополосных сигналов (а) и для приема широкополосных сигналов или не разделяющейся обработки (б)

К каждому отводу подключается свой весовой умножитель. Если расстоя­ние между отводами достаточно мало, то такая схема приближается к идеаль­ному фильтру, который мог бы обеспечить управление фазой и величиной сиг­нала на каждой из частот заданного диапазона. Сигналы с выходов весовых ум­ножителей суммируются для получения выходного напряжения решетки. Этот вариант схемы решетки представлен на рис. 1.13, б. В такой системе удается сформировать нули ДН в направлениях на источники помех на каждой из час­тот заданного диапазона.

На основе анализа тактических требований определяются пер­спективы развития радиолокационных средств и производящей их промышленности, планируются исследования в области радиоло­кации и радиоэлектроники. Реализация тактических требований ограничивается возможностями производства, достигнутым уровнем развития техники, технологии и науки. Исходя из этого, припроектировании новых РЛС к ним предъявляются тактико-техни­ческие требования.

Под тактико-техническими требованиями (ТТТ) понимают ко­личественные значения основных характеристик РЛС с учетом так­тических требований, современного состояния науки, техники, воз­можностей промышленности и экономических возможностей госу­дарства.


РЛС, состоящие на вооружении, характеризуются тактико-тех­ническими данными (ТТД), представляющими собой количествен­ные значения основных характеристик конкретного образца РЛС для средних условий его боевого использования иэксплуатации. Они определяются в результате тщательной экспериментальной проверки образцов данного типа РЛС. Количественно ТТД могут совпадать или несколько отличаться от ТТТ.

Тактико-технические данные определяют боевые возможности РЛС изаносятся в ее формуляр. Задача личного состава, эксплуа­тирующего РЛС, - поддерживать технические параметры станции на уровне, обеспечивающем реализацию ТТД.

Систему показателей, используемых для оценки боевых воз­можностей РЛС и проведения тактических расчетов, принято на­зывать тактическими характеристиками РЛС. Основными из них являются:

состав выдаваемой информации;

зона обзора (форма зоны и ее параметры);

точность выдаваемой информации;

разрешающие способности по измеряемым координатам;

информационная способность;

дискретность выдачи данных;

помехозащищенность;

надежность;

электромагнитная совместимость;

маневренные характеристики (время развертывания и сверты­вания, время включения и выключения, мобильность и т. д.).

1.2. СОСТАВ РАДИОЛОКАЦИОННОЙ ИНФОРМАЦИИ

Состав информации определяется, главным образом, требова­ниями потребителей информации и решаемыми ими задачами. Для обеспечения беспоискового захвата цели станциями наведения ра­кет в состав радиолокационной информации должны входить дан­ные о пространственных координатах цели. При решении задач наведения авиации необходима информация о пространственных координатах как цели, так и истребителя.

Наиболее удобной для представления информации о местопо­ложении воздушных объектов в пространстве является прямо­угольная система координат . В ней проще производить преобразование координат в единую для группировки средств сис­тему, отождествлять и объединять информацию, получаемую от нескольких источников. Однако устройства обработки сигналов в РЛС позволяют измерять иотображать информацию либо в сфе­рической , либо в цилиндрической системах коор­динат. При необходимости преобразование координат в прямо­угольную систему производится в системе обработки информации.

Для оценки воздушной обстановки и решения задач боевого управления средствами ПВО помимо пространственных координат целей необходима информация о принадлежности обнаруженных объектов (государственной, ведомственной и индивидуальной), применении и характере создаваемых противником помех, курсе и скорости полета целей.

Используемые в настоящее время зондирующие сигналы и ме­тоды обработки отраженных сигналов не позволяют по виду по­следних опознавать обнаруженные объекты. Эта задача возлага­ется на специальную систему радиолокационного опознавания (СРЛО), представляющую собой комплекс наземной и бортовой аппаратуры, обеспечивающий опознавание государственной при­надлежности объектов в масштабе Вооруженных Сил на основе единой системы кодирования сигналов . Сведения о курсе и ско­рости полета цели могут быть получены после вторичной обработ­ки радиолокационной информации.

При определении наряда сил и средств ПВО, необходимых для успешного решения боевой задачи, нужно иметь данные о коли­чественном составе целей, участвующих в ударе. Для получения такой информации РЛС должны обладать высокой разрешающей способностью по координатам, обеспечить которую не всегда пред­ставляется возможным. Поэтому практически к большинству РЛС предъявляются требования выдачи данных о характере обнару­женной цели (одиночная или групповая) и лишь приближенных данных о количественном составе. Точные данные о количествен­ном составе целей получают от других средств разведки или от специализированных РЛС.

Таким образом, в общем случае информация, выдаваемая РЛС, должна включать:

пространственные координаты целей;

государственную и индивидуальную принадлежность;

характеристику цели (одиночная или групповая) и по возмож­ности количественный состав групповой цели;

виды создаваемых помех и их интенсивность.

1.3. ЗОНА ОБЗОРА

Зоной обзора РЛС называется область пространства, в преде­лах которой РЛС обеспечивает получение радиолокационной ин­формации о цели с заданным средним значением эффективной по­верхности с качеством не ниже требуемого.

Под качеством РЛ информации в данном случае понимают со­вокупность следующих показателей:

вероятности правильного обнаружения и ложной тревоги (ка­чество обнаружения);

точности информации и дискретности ее выдачи.

Понравилось? Лайкни нас на Facebook