Электрон (элементарная частица). Электрон. Образование и строение электрона. Магнитный монополь электрона

В опыте по измерению массы электрона с помощью масс-спектрографа на фотопластинке обнаруживается только одна полоска. Так как заряд каждого электрона равен одному элементарному заряду, мы приходим к заключению, что все электроны обладают одной и той же массой.

Масса, однако, оказывается непостоянной. Она растет при увеличении разности потенциалов , ускоряющей электроны в масс-спектрографе (рис. 351), Так как кинетическая энергия электрона прямо пропорциональна ускоряющей разности потенциалов , то отсюда следует, что масса электрона растет с его кинетической энергией. Опыты приводят к следующей зависимости массы от энергии:

, (199.1)

где - масса электрона, обладающего кинетической энергией , - постоянная величина, - скорость света в вакууме . Из формулы (199.1) вытекает, что масса покоящегося электрона (т. е. электрона с кинетической энергией ) равна . Величина получила поэтому название массы покоя электрона.

Измерения с различными источниками электронов (газовый разряд, термоэлектронная эмиссия, фотоэлектронная эмиссия и др.) приводят к совпадающим значениям массы покоя электрона. Масса эта оказывается крайне малой:

Таким образом, электрон (покоящийся или медленно движущийся) почти в две тысячи раз легче атома легчайшего вещества - водорода.

Величина в формуле (199.1) представляет собой добавочную массу электрона, обусловленную его движением. Пока эта добавка мала, можно при вычислении кинетической энергии приближенно заменить на , и положить . Тогда отсюда видно, что наше предположение о малости добавочной массы по сравнению с массой покоя равносильно условию, что скорость электрона много меньше скорости света . Напротив, когда скорость электрона приближается к скорости света, добавочная масса становится большой.

Альберт Эйнштейн (1879-1955) в теории относительности (1905 г.) теоретически обосновал соотношение (199.1). Он доказал, что оно применимо не только к электронам, но и к любым частицам или телам без исключения, причем под нужно понимать массу покоя рассматриваемой частицы или тела. Выводы Эйнштейна были проверены в дальнейшем в разнообразных опытах и полностью подтвердились. Теоретическая формула Эйнштейна, выражающая зависимость массы от скорости, имеет вид

(199.2)

Таким образом, масса любого тела возрастает при увеличении его кинетической энергии или скорости. Однако, как и для электрона, добавочная масса, обусловленная движением, заметна только тогда, когда скорость движения приближается к скорости света. Сравнивая выражения (199.1) и (199.2), получим формулу для кинетической энергии движущегося тела, учитывающую зависимость массы от скорости:

(199.3)

В релятивистской механике, (т. е. механике, основанной на теории относительности) так же как и в классической, импульс тела определяется как произведение его массы на скорость. Однако теперь масса сама зависит от скорости (см. (196.2)}, и релятивистское выражение для импульса имеет вид

(199.4)

В механике Ньютона масса тела считается величиной постоянной, не зависящей от его движения. Это означает, что ньютонова механика (точнее, 2-й закон Ньютона) применима только к движениям тел со скоростями очень малыми по сравнению со скоростью света. Скорость света колоссальна; при движении земных или небесных тел всегда выполняется условие , и масса тела практически неотличима от его массы покоя. Выражения для кинетической энергии и импульса (199.3) и (199.4) при переходят в соответствующие формулы для классической механики (см. упражнение 11 в конце главы).

Ввиду этого при рассмотрении движения таких тел можно и нужно пользоваться механикой Ньютона.

Иначе обстоит дело в мире мельчайших частиц вещества - электронов, атомов. Здесь нередко приходится сталкиваться с быстрыми движениями, когда скорость частицы уже не мала по сравнению со скоростью света. В этих случаях механика Ньютона неприменима и нужно пользоваться более точной, но и более сложной механикой Эйнштейна; зависимость массы частицы от ее скорости (энергии) - один из важных выводов этой новой механики.

Другим характерным выводом релятивистской механики Эйнштейна является заключение о невозможности движения тел со скоростью, большей скорости света в вакууме. Скорость света является предельной скоростью движения тел.

Существование предельной скорости движения тел можно рассматривать как следствие возрастания массы со скоростью: чем больше скорость, тем тяжелее тело и тем труднее дальнейшее увеличение скорости (так как ускорение уменьшается с увеличением массы).

Известно, что электроны имеют отрицательный заряд. Но каким образом можно убедиться в том, что масса электрона и его заряд постоянны для всех этих частиц? Проверить это можно, только поймав его на лету. Остановившись, он затеряется среди молекул и атомов, из которых состоит лабораторное оборудование. Процесс познания микромира и его частиц проделал долгий путь: от первых примитивных экспериментов до новейших разработок в области экспериментальной атомной физики.

Первые сведения об электронах

Сто пятьдесят лет назад электроны известны не были. Первым звоночком, указывающим на существование «кирпичиков» электричества, были опыты по электролизу. Во всех случаях каждая заряженная частичка вещества несла стандартный электрический заряд, имевший одну и ту же величину. В некоторых случаях количество заряда удваивалось или утраивалась, но всегда оставалось кратным одной минимальной величине заряда.

Эксперименты Дж. Томпсона

В лаборатории Кавендиша Дж. Томсон провел эксперимент, реально доказывающий существование частиц электричества. Для этого ученый исследовал излучение, исходящее из катодных трубок. В эксперименте лучи отталкивались от отрицательно заряженной пластины и притягивались к положительно заряженной. Гипотеза о постоянном присутствии в электрическом поле неких электрических частиц подтвердилась. Скорость движения их была сопоставима со скоростью света. Электрический заряд в пересчете на массу частицы оказался неимоверно большим. Из своих наблюдений Томпсон вывел несколько заключений, которые впоследствии были подтверждены другими исследованиями.

Выводы Томпсона

  1. Атомы могут быть разбиты при бомбардировке более быстрыми частицами. При этом из середины атомов вырываются отрицательно заряженные корпускулы.
  2. Все заряженные частицы имеют одинаковую массу и заряд вне зависимости от вещества, из которого они были получены.
  3. Масса этих частиц гораздо меньше массы самого легкого атома.
  4. Каждая частица вещества несет в себе наименьшую возможную долю электрического заряда, меньше которого в природе не существует. Любое заряженное тело несет в себе целое количество электронов.

Подробные опыты дали возможность произвести расчеты параметров таинственных микрочастиц. В результате было выяснено, что открытые заряженные корпускулы являются неделимыми атомами электричества. Впоследствии им было дано название электронов. Оно пришло еще из Древней Греции и оказалось уместным для описания новооткрытой частицы.

Прямое измерение скорости электрона

Поскольку нет никаких возможностей увидеть электрон, опыты, необходимые для измерения базовых величин этой элементарной частицы, производятся с помощью полей - электромагнитного и гравитационного. Если первое воздействует только на заряд электрона, то с помощью тонких опытов, учитывая гравитационное воздействие, можно было приблизительно рассчитать массу электрона.

Электронная пушка

Самые первые измерения масс и зарядов электронов были проведены с помощью электронной пушки. Глубокий вакуум в теле пушки позволяет электронам нестись узким пучком от одного катода к другому.

Электроны заставляют дважды проходить через узкие отверстия с постоянной скоростью v . Происходит процесс, подобный тому, как струя из садового шланга попадает в дырку в заборе. Порции электронов летят вдоль трубки с постоянной скоростью. Экспериментально доказано, что если напряжение, приложенное к электронной пушке, составляет 100 В, то скорость электрона будет рассчитана как 6 млн м/с.

Экспериментальные выводы

Прямое измерение скорости электрона показывает, что вне зависимости от того, из каких материалов сделана пушка и какова разность потенциалов, выполняется соотношение e/m = const.

Этот вывод был сделан уже в начале XX столетия. Однородные пучки заряженных частиц тогда еще создавать не умели, для опытов использовались другие приборы, но результат оставался тем же. Эксперимент позволил сделать несколько выводов. Отношение заряда электрона к его массе имеет одну и ту же величину для электронов. Это дает возможность сделать заключение об универсальности электрона как составной части любой материи в нашем мире. При очень больших скоростях величина e/m оказывается меньше ожидаемой. Этот парадокс вполне объясним тем фактом, что при высоких скоростях, сопоставимых со скоростью света, масса частицы увеличивается. Граничные условия преобразований Лоренца говорят о том, что при скорости тела, равной скорости света, масса этого тела становится бесконечной. Заметное увеличение массы электрона происходит в полном согласии с теорией относительности.

Электрон и его масса покоя

Парадоксальное заключение о том, что масса электрона непостоянна, влечет за собой несколько интересных выводов. В обычном состоянии масса покоя электрона не меняется. Ее можно измерить на основании различных экспериментов. В настоящее время масса электрона неоднократно измерена и составляет 9,10938291(40)·10⁻³¹ кг. Электроны с такой массой вступают в химические реакции, формируют движение электрического тока, улавливаются точнейшими приборами, регистрирующими ядерные реакции. Заметное увеличение этого значения возможно только при скоростях, близких к скорости света.

Электроны в кристаллах

Физика твердого тела - это наука, ведущая наблюдения за поведением заряженных частиц в кристаллах. Итогом многочисленных экспериментов стало создание особой величины, характеризующей поведение электрона в силовых полях кристаллических веществ. Это так называемая эффективная масса электрона. Ее величина вычисляется исходя из того, что движение электрона в кристалле подчиняется дополнительным силам, источником которых является сама кристаллическая решетка. Такое движение можно описать как стандартное для свободного электрона, но при расчете импульса и энергии такой частицы следует принимать во внимание не массу покоя электрона, а эффективную, значение которой будет другим.

Импульс электрона в кристалле

Состояние любой свободной частицы может быть охарактеризовано величиной ее импульса. Поскольку значение импульса уже определено, то, согласно принципу неопределенности, координаты частицы словно размыты по всему кристаллу. Вероятность встретить электрон в любой точке кристаллической решетки практически одинакова. Импульс электрона характеризует его состояние в любой координате энергетического поля. Расчеты показывают, что зависимость энергии электрона от его импульса такая же, как и свободной частицы, но при этом масса электрона может принимать значение, отличающееся от обычного. В целом энергия электрона, выраженная через импульс, будет иметь вид E(p)=p 2 /2m*. В данном случае m* - эффективная масса электрона. Практическое применение эффективной массы электрона чрезвычайно важно при разработке и изучении новых полупроводниковых материалов, применяемых в электронике и микротехнике.

Масса электрона, как и любой другой квазичастицы, не может быть охарактеризована стандартными характеристиками, пригодными в нашей Вселенной. Любая характеристика микрочастицы способна удивлять и подвергать сомнению все наши представления об окружающем мире.

Удельный заряд электрона (т. е. отношение ) был впервые измерен Томсоном в 1897 г. с помощью разрядной трубки, изображенной на рис. 74.1. Выходящий из отверстия в аноде А электронный пучок (катодные лучи; см. § 85) проходил между пластинами плоского конденсатора и попадал на флуоресцирующий экран, создавая на нем светящееся пятно.

Подавая напряжение на пластины конденсатора, можно было воздействовать на пучок практически однородным электрическим полем. Трубка помещалась между полюсами электромагнита, с помощью которого можно было создавать на том же участке пути электронов перпендикулярное к электрическому однородное магнитное поле (область этого поля обведена на рис. 74.1 пунктирной окружностью). При выключенных полях пучок попадал на экран в точке О. Каждое из полей в отдельности вызывало смещение пучка в вертикальном направлении. Величины смещений определяются полученными в предыдущем параграфе формулами (73.3) и (73.4).

Включив магнитное поле и измерив вызванное им смещение следа пучка

Томсон включал также электрическое поле и подбирал его значение так, чтобы пучок снова попадал в точку О. В этом случае электрическое и магнитное поля действовали на электроны пучка одновременно с одинаковыми по величине, но противоположно направленными силами. При этом выполнялось условие

Решая совместно уравнения (74.1) и (74.2), Томсон вычислял .

Буш применил для определения удельного заряда электронов метод магнитной фокусировки. Суть этого метода заключается в следующем. Допустим, что в однородном магнитном поле вылетает из некоторой точки слегка расходящийся симметричный относительно направления поля пучок электронов, имеющих одинаковую по величине скорость v. Направления, по которым вылетают электроны, образуют с направлением В небольшие углы а. В § 72 было выяснено, что электроны движутся в этом случае по спиральным траекториям, совершая за одинаковое время

полный оборот и смещаясь вдоль направления поля на расстояние , равное

Вследствие малости угла а расстояния (74.3) для разных электронов оказываются практически одинаковыми и равными (для малых углов ). Следовательно, слегка расходящийся пучок сфокусируется в точке, отстоящей от точки вылета электронов на расстояние

В опыте Буша электроны, испущенные раскаленным катодом К (рис. 74.2), ускоряются, проходя разность потенциалов U, приложенную между катодом К и анодом А. В результате они приобретают скорость и, значение которой может быть найдено из соотношения

Вылетев затем из отверстия в аноде, электроны образуют узкий пучок, направленный вдоль оси эвакуированной трубки, вставленной внутрь соленоида. На входе в соленоид помещается конденсатор, на который подается переменное напряжение. Поле, создаваемое конденсатором, отклоняет электроны пучка от оси прибора на небольшие изменяющиеся со временем углы а. Это приводит к «завихрению» пучка - электроны начинают двигаться по различным спиральным траекториям. На выходе из соленоида ставится флуоресцирующий экран. Если подобрать магнитную индукцию В так, чтобы расстояние Г от конденсатора до экрана удовлетворяло условию

(l - шаг спирали, - целое число), то точка пересечения траекторий электронов попадет на экран - электронный пучок окажется сфокусированным в этой точке и возбудит на экране резкое светящееся пятно. Если условие (74.6) не соблюдается, светящееся пятно на экране будет размытым. Решив совместно уравнения (74.4), (74.5) и (74.6), можно найти

Наиболее точное значение удельного заряда электрона, установленное с учетом результатов, полученных разными методами, равно

Величина (74.7) дает отношение заряда электрона к его массе покоя . В опытах Томсона, Буша и других аналогичных опытах определялось отношение заряда к релятивистской массе, равной

В опытах Томсона скорость электронов составляла примерно 0,1 с. При такой скорости релятивистская масса превышает массу покоя на 0,5%. В последующих опытах скорость электронов достигала очень больших значений. Во всех случаях было обнаружено уменьшение измеряемых значений с ростом v, происходившее в точном соответствии с формулой (74.8).

Заряд электрона был определен с большой точностью Милликеном в 1909 г. В закрытое пространство между горизонтально расположенными пластинами конденсатора (рис. 74.3) Милликен вводил мельчайшие капельки масла. При разбрызгивании капельки электризовались, и их можно было устанавливать неподвижно, подбирая величину и знак напряжения на конденсаторе.

Равновесие наступало при условии

здесь - заряд капельки, Р - результирующая силы тяжести и архимедовой силы, равная

(74.10)

( - плотность капельки, - ее радиус, - плотность воздуха).

Из формул (74.9) и (74.10), зная , можно было найти . Для определения радиуса измерялась скорость равномерного падения капельки в отсутствие поля. Равномерное движение капельки устанавливается при условии, что сила Р уравновешивается силой сопротивления (см. формулу (78.1) 1-го тома; - вязкость воздуха):

(74.11)

Движение капельки наблюдалось с помощью микроскопа. Для измерения определялось время, за которое капелька проходила расстояние между двумя нитями, видимыми в поле зрения микроскопа.

Точно зафиксировать равновесие капельки очень трудно. Поэтому вместо поля, отвечающего условию (74.9), включалось такое поле, под действием которого капелька начинала двигаться с небольшой скоростью вверх. Установившаяся скорость подъема определяется из условия, что сила Р и сила в сумме уравновешивают силу

Исключив из уравнения (74.10), (74.11) и (74.12) Р и , получим выражение для

(в эту формулу Милликен вносил поправку, учитывающую, что размеры капелек были сравнимы с длиной свободного пробега молекул воздуха).

Итак, измерив скорость свободного падения капельки и скорость ее подъема известном электрическом поле , можно было найти заряд капельки е. Произведя измерение скорости при некотором значении заряда , Милликен вызывал ионизацию воздуха облучая пространство между пластинами рентгеновскими лучами. Отдельные ионы, прилипая к капельке, изменяли ее заряд, в результате чего скорость также менялась. После измерения нового значения скорости снова облучалось пространство между пластинами и т. д.

Измеренные Милликеном изменения заряда капельки и сам заряд каждый раз получались целыми кратными одной и той же величины . Тем самым была экспериментально доказана дискретность электрического заряда, т. е. тот факт, что всякий заряд слагается из элементарных зарядов одинаковой величины.

Значение элементарного заряда, установленное с учетом измерений Милликена и данных, полученных другими методами, равно

Мы упоминали уже о частицах атомов, движущихся по проводам, внутри радиоламп, рентгеновских трубок и многих других приборов. Эти частицы, получившие назва­ние электронов, являются мельчайшими частичками отри­цательного электричества.

В отличие от атомов химических элементов электрон является элементарной частичкой; мы никогда не наблю­

Дали её частей; при современных возможностях мы не мо­жем разбить её на части. Электрон - это наименьший от­рицательный электрический заряд.

Все электроны совершенно одинаковы, независимо от того, какому атому они принадлежали или принадлежат.

Масса электрона в 1838 раз меньше массы легчайшего (водородного) атома и равна

О, ООО ООО ООО ООО ООО ООО ООО ООО ООО 910 660 грамма.

Электрический заряд одного электрона также чрезвы­чайно мал. Через нить горящей двадцативаттной лам­почки (при юродском напряжении в сети) каждую се­кунду проходит миллиард миллиардов электронов; все они весят менее одной миллиардной доли грамма!

Невольно напрашивается вопрос, как были опреде­лены с такой точностью заряд и масса электрона?

Чтобы измерить заряд и массу электрона, нужно прежде всего получить свободные, не связанные с веще­ством электроны. Для этого существует множество спосо­бов. Электроны вырываются как из твёрдого вещества, так и из молекул и атомов газа при сильном нагревании, в некоторых случаях при освещении светом, в особен­ности невидимыми ультрафиолетовыми лучами и ещё лучше - рентгеновыми лучами. Особенно легко можно вырывать электроны из металлов, в которых они очень свободно перемещаются (в этом отличие металлов от не­проводников-изоляторов, в которых электроны «крепко связаны»).

Итак, мы имеем свободные электроны. Можно ли не­посредственно, на весах, взвесить один электрон? Оче­видно, это невозможно, он слишком мал. Но оказалось возможным определить заряд электрона, а затем косвен­ным путём найти и его массу.

Представьте себе крошечную капельку масла, мед­ленно падающую между двумя металлическими пластин­ками под действием силы тяжести (рис. 8). Создадим на капельке электрический заряд. Тогда падение капельки можно будет приостановить, зарядив пластинки, между которыми движется капелька, так, чтобы верхняя пла­стинка притягивала заряд капельки, а нижняя отталки­вала его. Капелька остановится, если электрическая сила, тянущая вверх заряд капельки, окажется в точности рав­ной силе тяжести, которая тянет капельку вниз.

Таким образом, мы сможем определить действующую на капельку электрическую силу, а значит, и её заряд; не­обходимо только точно знать силу тяжести, действующую на капельку, а для этого нужно знать и её массу. Массу капельки удалось определить, определив скорость её сво­бодного падения (без действия электрических сил), - чем тяжелее капелька, тем быстрее падает она, преодолевая сопротивление воздуха.

Этим способом был определён заряд электрона.

Опыт проводился так. Пульверизатор, расположенный над пластинками, распылял немного масла. Нужно было

Подождать, пока какая-либо из капелек масла не попа­дала между пластинками, проникая туда через крошеч­ное, специально для этого сделанное отверстие в верхней пластинке. С помощью специального микроскопа очень точно определялась скорость падения капельки. После этого на короткое время зажигалась рентгеновская лам­па. Рентгеновы лучи, проходя между пластинками, выры­вали из молекул воздуха множество электронов. Очень скоро один или несколько электронов или положительно заряженных молекул оседало на капельку; капелька при­обретала необходимый заряд. Затем пластинкам сооб­щался заряд такой величины, чтобы капелька повисла неподвижно.

Определив наименьший из зарядов, который могла нести капелька, нашли заряд одного электрона. Все другие получавшиеся заряды были больше найденного
наименьшего в два, в три, в четыре и в большее целое число раз, что соответствовало двум, трём, четырём и более электронам, осевшим на капельку.

Теперь нужно определить его массу, не взвешивая его. Как это сделать?

Представьте себе поток невидимых заряженных части­чек, проносящихся между заряженными пластинками (или полюсами магнита). Под действием электрических (или магнитных) сил они отклоняются вниз (рис. 9). Цель, в которую попадают частички, мы видим благодаря экрану, покрытому сернистым цинком, или обычной фото­пластинке. Сернистый цинк светится от ударов заряжен­ных частичек, а на фотопластинку эти заряженные

Частицы действуют так же, как и лучи света. Мы видим по маленькой светящейся точке на экране (или чёрной точке на фотопластинке), как отклонились частички. Мы можем судить о массе частичек, если знаем их скорость и силу, которая вызвала отклонение. А силу эту мы знаем, зная заряд частичек.

На самом деле прибор, конечно, оказывается гораздо более сложным, чем изображённый на рисунке, так как нужно ещё получить частички с одинаковой скоростью.

Определив массу электрона, мы убеждаемся в том, что эти мельчайшие отрицательно заряженные частички обла­дают массой, во много раз меньшей массы любого атома.

Строение вещества.

Строение атома.

Атом – мельчайшая частица химического элемента, носитель всех его химических свойств. Атом неделим в химическом отношении. Атомы могут существовать как в свободном состоянии, так и в соединении с атомами того же элемента или другого элемента.
За единицу атомных и молекулярных масс в настоящее время приняли 1/12 часть массы атома углерода с атомной массой, равной 12 (изотоп ). Эту единицу называют углеродной единицей.

Масса и размеры атомов. Число Авогадро.

Грамм-атом, так же как и грамм-молекула любого вещества, содержит 6,023 10^23 атомов или соответственно молекул. Это число называется числом Авогадро (N0). Так, в 55,85 г железа, 63,54 г меди, 29,98 г алюминия, и т. п. находится число атомов, равное числу Авогадро.
Зная число Авогадро, нетрудно подсчитать массу одного атома любого элемента. Для этого гpaмм-атомную массу одного атома надо разделить на 6,023 10^23 . Так, масса атома водорода (1) и масса атома углерода (2) соответственно равны:

Исходя из числа Авогадро, можно оценить и объем атома. Например, плотность меди равна 8,92 г/см^3, а грамм-атомная масса 63,54 г. Значит, один грамм-атом меди занимает объем , и на один атом меди приходится объем .

Структура атомов.

Атом является сложным образованием и состоит из ряда более мелких частиц. Атомы всех элементов состоят из положительно заряженного ядра и электронов - отрицательно заряженных частиц очень малой массы. Ядро занимает ничтожно малую часть всего объема атома. Диаметр атома равен см, а диаметр ядра - см.
Хотя диаметр ядра атома в 100000 paз меньше диаметра самого атома, практически вся масса атома сосредоточена в его ядре. Отсюда следует, что плотность атомных ядер очень велика. Если бы удалось собрать 1 см3 атомных ядер, то его масса была бы около 116 млн. тонн.
Ядро состоит из протонов и нейтронов. Эти частицы имеют общее название - нуклоны.
Протон - - устойчивая элементарная частица с массой, близкой к углеродной единице. Заряд протона равен заряду электрода, но с обратным знаком. Если заряд электрона принимают равным -1, то заряд протона равен +1. Протон – это атом водорода, лишенный электрона.
Нейтрон – атомная оболочка, отрицательный заряд которой компенсирует положительный заряд ядра, обусловленный наличием в нем протонов.
Таким образом, количество электронов в атоме равно количеству протонов в его ядре.
Зависимость между числом протонов, числом нейтронов и массовым числом атома выражается уравнением: N=A-Z
Отсюда число нейтронов в ядре атома любого элемента равно разности между его массовым числом и числом протонов.
Так число нейтронов в ядре атома радия с массой 226 N=A-Z=226-88=138

Масса и заряд электрона.

Все химические процессы образования и разрушения химических соединений происходят без изменения ядер атомов элементов, входящих в состав этих соединений. Изменения претерпевают только электронные оболочки. Химическая энергия, таким образом, связанa с энергией электронов. Чтобы понимать процессы образования и разрушения химических соединений, следует иметь представления о свойствах электрона вообще и особенно о свойствах и поведении электрона в атоме.
Электрон - это элементарная частица, обладающая элементарным отрицательным электрическим зарядом, т. е. наименьшим могущим существовать количеством электричества. Заряд электрона равен эл. ст. ед. или кулона. Масса покоя электрона равна г, т.е. в 1837,14 раза меньше массы атома водорода. Масса электрона составляет углеродной единицы.

Модель атома по Бору.

В начале XX века М. Планк А. Эйнштейн создали квантовую теорию света, согласно которой свет является потоком отдельных квантов энергии, которую нecyт частицы света - фотоны .
Величина кванта энергии (E) различна для различных излучений и пропорциональна частоте колебаний :
,
где h - постоянная Планка.
М. Планк показал, что атомы поглощают или испускают лучистую энергию только отдельными вполне определенными порциями – квантами .
Пытаясь увязать закон классической механики с квантовой теорией датский ученый Н. Бор считал, что электрон в атоме водорода может находиться лишь на определенных - постоянных орбитах, радиусы которых относятся друг к другу как квадраты целых чисел Эти орбиты Н. Бором были названы стационарными.
Излучение энергии происходит только при переходе электрона с более дальней орбиты на более близкую к ядру орбиту. При переходе же электрона с болей близкой орбиты на более дальнюю энергия атомом поглощается.
, где - энергии электронов в стационарных состояниях.
При Ei > Ек энергия выделяется.
При Ei < Ек энергия поглощается.
Решение вопроса о распределении электронов в атоме основано на изучении линейчатых спектров элементов и их химических свойств. Спектр атома водорода почти полностью подтверждал теорию Н. Бора. Однако наблюдаемое расщепление спектральных линий у многоэлектронных атомов и усиление этого расщепления в магнитном и - электрических полях теория Н. Бора объяснить не могла.

Волновые свойства электрона.

Законы классической физики противопоставляют друг другу понятия «частица» и «волна». Современная физическая теория, получившие название квантовой, или волновой механики , показала, что движение и взаимодействие частиц малой массы - микрочастиц происходят по законам, отличным от законов классической механики. Микрочастице одновременно присущи некоторые свойства корпускул (частиц) и некоторые свойства волн. С одной стороны, электрон, протон или другая микрочастица движется и действует подобно корпускуле, например, при соударении с другой микрочастицей. С другой стороны, при движении микрочастицы обнаруживаются типичные для электромагнитных волн явления интерференции и дифракции.
Таким образом, в свойствах электрона (как и других микрочастиц), в законах его движения проявляются неразрывность и взаимосвязь двух качественно различных форм существования материи, вещества и поля. Микрочастицу нельзя рассматривать ни как обыкновенную частицу, ни как обыкновенную волну. Микрочастица обладает корпускулярно-волновым дуализмом.
Говоря о взаимосвязи вещества и поля, можно прийти к выводу, что, если каждой материальной частице присуща определенная масса, то, по-видимому, этой же частице должна отвечать и определенной длины, волна. Возникает, вопрос о взаимосвязи массы и волны. В 1924 году французский физик Луи де Бройль высказал предположение, что с каждым движущимся электроном (и вообще с каждой движущейся материальной частицей) связан волновой процесс, длина волны которого , где - длина волны в см(м), h - постоянная Планка, равная эрг. сек (), m - масса частицы в г (кг), - скорость частицы, в см/сек.
Из этого уравнения видно, что частица, находящаяся в покое, должна иметь бесконечно большую, длину волны и что длина волны уменьшается с увеличением скорости частицы. Длина волны у движущейся частицы большой массы очень мала и экспериментально ее определить пока нельзя. По тому мы говорим о волновых свойствах только микрочастиц. Электрон обладает волновыми свойствами. Это значит, что его движение в атоме можно описать волновым уравнением.
Планетарная модель строения атома водорода, созданная Н. Бором, который исходил из представления об электроне только как классической частице, не может объяснить целого ряда свойств электрона. Квантовая механика показала, что представление о движении электрона вокруг ядра по определенным орбитам подобно движению планет вокруг Солнца, следует считать несостоятельным.
Электрон, обладая свойствами волны, движется по всему объему, образуя электронное облако, которое для электронов, находящихся в одном атоме, может иметь различную форму. плотность этого электронного облака в той или иной части атомного объема неодинакова.

Характеристика электрона четырьмя квантовыми числами.

Основная характеристика, определяющая движение электрона в поле ядра,- это его энергия. Энергия электрона, как и энергия частицы светового потока - фотона, принимает не любые, а лишь определенные дискретные, прерывные или, как говорят, квантующиеся значения.
Движущийся электрон обладает тремя степенями свободы перемещения в пространстве (соответственно трем координатным осям) и одной дополнительной степенью свободы, обусловленной наличием у электрона собственного механического и магнитного моментов, которые учитывают вращение электрона вокруг своей оси. Следовательно, для полной энергетической характеристики состояния электрона в атоме необходимо и достаточно иметь четыре параметра. Эти параметры получили название квантовых чисел . Квантовые числа, так же как и энергия электрона, могут приникать не все, а лишь определенные значения. Соседние значения квантовых чисел различаются на единицу.

Главное квантовое число n характеризует общий запас энергии электрона или его энергетический уровень. Главное квантовое число может принимать значения целых чисел от 1 до . Для электрона, находящегося в поле ядра главное квантовое число может принимать значения от 1 до 7 (соответственно номеру периода в периодической системе, в котором находится элемент). Энергетические уровни обозначаются или цифрами в соответствии со значениями главного квантового числа, или буквами:

п

Обозначение уровня

Если, например, n=4, то электрон, находится на четвертом, считая от ядра атома, энергетическом уровне, или на N уровне.

Орбитальное квантовое числа l, которое иногда называют побочным квантовым числом, характеризует различное энергетическое состояние электрона данного уровня. Тонкая структура спектральных линий говорит о том, что электроны каждого энергетического уровня группируются в подуровни. Орбитальное квантовое число связано с моментом количества движения электрона при его движении относительно ядра атома. Орбитальное квантовое число определяет также форму электронного облака Квантовое число l может принимать все целочисленные значения от 0 до (п-1). Например, при n=4, l=0, 1, 2, 3. Каждому значению l соответствует определенный подуровень. Для подуровней применяются буквенные обозначения. Так, при l=0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f- подуровнях. Электроны различных подуровней соответственно называют s-, p-, d-, f - электронами. Возможное число подуровней для каждого энергетического уровня равно номеру этого уровня, но не превышает четырех. Первый энергетический уровень (п=1) состоит из одного s-подуровня, второй (п=2), третий (п=3) и четвертый (п=4) энергетические уровни состоят соответственно из двух (s, p), трех (s, p, d) и четырех (s, p, d, f) подуровней. Больше четырех подуровней не может быть, так как значения l=0, 1, 2, 3 описываю электроны атомов всех 104 известных сейчас элементов.
Если l=0 (s-электроны), то момент количества движения электрона относительно ядра атома равен нулю. Это может быть только когда электрон поступательно движется не вокруг ядра, а от ядра к периферии и обратно. Электронное облако s-электрона имеет форму шара.

Магнитное квантовое число - c моментом количества движения электрона связан и его магнитный момент. Магнитное квантовое число характеризует магнитный момент электрона. магнитное квантовое число характеризует магнитный момент электрона и указывает на ориентацию электронного облака относительного избранного направления или относительно направления магнитного поля. Магнитное квантовое число может принимать любые целые положительные и отрицательные значения, включая и ноль в пределах от – l до + l. Например, если l=2, то имеет 2 l+1=5 значений (-2, -1, 0, +1, +2). При l=3 число значений равно 2 l+1=7 (-3, -2, -1, 0, +1, +2, +3). Число значений магнитного квантового числа, которое равно 2 l+1, - это число энергетических состояний, в которых могут находиться электроны данного подуровня. Таким образом, s-электроны имеют лишь одно состояние (2 l+1=1), p-электроны – 3 состояния (2 l+1=3), d-, f-электроны – соответственно 5 и 7 состояний. Энергетические состояния принято обозначать схематически энергетическими ячейками, изображая их в виде прямоугольников, а электроны в виде стрелок в этих ячейках.

Спиновое квантовое число - характеризует внутреннее движение электрона - спин. Оно связано с собственным магнитным моментом электрона, обусловленным его движением вокруг своей оси. Это квантовое число может принимать только два значения: + 1/2 и -1/2, в зависимости от того, параллельно или антипараллельно магнитному полю, обусловленному движением электрона вокруг ядра, ориентируется магнитное поле спина электрона.
Два электрона (пара) с одинаковыми значениями квантовых чисел: n, I, но с противоположно направленными спинами ( ↓) называются спаренными или неподеленной парой электронов. Электроны с ненасыщенными спинами () называются неспаренными.

Принцип Паули, принцип наименьшей энергии, правило Гунда.
Распределение электронов в атомах элементов определяют три основных положения: принцип Паули, принцип наименьшей энергии и правило Гунда.

Принцип Паули. Изучая многочисленные, спектры атомов швейцарский физик В. Паули в 1925 году пришел к выводу, который получил название принципа или запрета Паули: „Двум электронам атома запрещено быть во всех отношениях похожими друг на друга" или, что то же самое, „в атоме не может быть даже двух электронов с одинаковыми значениями всех четырех квантовых чисел". Энергетические состояния электронов, характеризуемые одинаковыми значениями трех квантовых чисел: n, I и m1 принято обозначать энергетической ячейкой .
Согласно принципу Паули, в энергетической ячейке может быть только два электрона, причем с противоположными спинами
Нахождение в одной энергетической ячейке третьего электрона означало бы, что у двух из них все четыре квантовых числа одинаковы. Число, возможных состояний электронов (рис. .4) на данной подуровне равно числу значений магнитного квантового числа для этого подуровня, т. е. 21+ 1. Максимальное число электронов на этом подуровне, согласно принципу Паули будет 2(21+ 1). Таким образом, на s-подуровне возможно 2 электрона; на p-подуровне 6 электронов; на d-подуровне 10 электронов; на f-подуровне 14 электронов. Число возможных состояний электронов на каком-либо уровне равно квадрату главного квантового числа а максимальное число электронов на этом уровне

Принцип наименьшей энергии.

Последовательность размещения электронов в атоме должна отвечать наибольшей связи их с ядром, т. е. электрон, должен обладать наименьшей энергией. Поэтому электрону необязательно занимать вышележащий энергетический уровень, если в нижележащем уровне есть места, располагаясь на которых электрон будет обладать меньшей энергией.

Так как энергия электрона в основном определяется значениями главного n и орбитального / квантовых чисел, то сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и / является меньшей. Например, запас энергии на подуровне 4s(n +/ = 4 +0 = 4) меньше, чем на 3d(n + /= 3 + 2 = 5); на 5s (n + / = 5 + 0 = 5) меньше, чем на 4d(n + / = 4 + 2 = 6); на 5р(п + / = 5 +1 =6) меньше, чем на 4f(n + 1 = 4+3 = 7). Если для двух уровней суммы значений n и / равны, то сначала идет заполнение подуровня с меньшим значением п. Например, на подуровнях 3d, 4p, 5s суммы значений n и / равны пяти, в этом случае сначала заполняются подуровни с меньшими значениями главного квантового числа n, т. е. в следующей последовательности: 3d-4р-5s.
Когда энергии близких подуровней очень мало отличаются друг от друга, встречаются некоторые исключения из этого правила. Так, подуровень 5d заполняется одним электроном 5dl раньше 4f; 6d1-2 раньше 5f.
Заполнение энергетических уровней и подуровней идет в следующей последовательности: ls→2s→2p→3s→3p→4s→ 3d → 4р→ 5s → 4d → 5р→ 6s →(5dl) →4f→ 5d→6p→ 7s→ (6d1-2)→5f→ 6d→7p

Правило Гунда.
Электроны в пределах данного подуровня располагаются сначала каждый в отдельной ячейке в виде неспаренных „холостых" электронов. Иными словами, при данном значении I электроны в атоме располагаются так, что суммарное спиновое число их максимально. Например, если в трех р-ячейках надо разместить три электрона, то каждый из них будет располагаться в отдельной ячейке таким образом:

Электронные формулы атомов и схемы.

Принимая во внимание рассмотренные положения, легко представить распределение электронов по энергетическим уровням и подуровням в атомах любого элемента. Это распределение электронов в атоме записывается в виде так называемых электронных формул. В электронных формулах буквами s, p, d, f обозначаются энергетические подуровни электронов; цифры впереди букв означают энергетический уровень, в котором находится данный электрон, а индекс вверху справа - число электронов на данном подуровне. Например, запись 5р3 оначает, что 3 электрона располагаются на р-подуровне пятого энергетического уровня.
Чтобы составить электронную формулу атома любого элемента, достаточно знать номер данного элемента в периодической системе и выполнить основные положения, которым подчиняется распределение электронов в атоме.
Пусть, например, нужно составить электронные формулы для атомов серы, кальция, скандия, железа и лантана. Из периодической таблицы определяем номера данных элементов, которые соответственно равны 16, 20, 21, 26, . Это значит, что на энергетических уровнях и подуровнях у атомов данных элементов содержится соответственно 16, 20, 21, 26, 57 электронов. Соблюдая принцип Паули и принцип наименьшей энергии, т. е. последовательность заполнения энергетических уровней и подуровней, можно составить электронные формулы атомов этих элементов:

Структура электронной оболочки атома может быть изображена и в виде схемы размещения электронов по энергетическим ячейкам.
Для атомов железа такая схема имеет следующий вид:

На этой схеме наглядно видно выполнение правила Гунда. На Зd-подуровне максимальное количество, ячеек (четыре) заполнено неспаренными электронами. Изображение структуры электронной оболочки в атоме в виде электронных формул и в виде схем наглядно не отражает волновых свойств электрона. Однако следует помнить, что для каждого s-, р-, d-, f-электрона характерно свое электронное облако. Различная форма электронного облака указывает на то, что электрон имеет неодинаковую вероятность нахождения в данной области пространства атома. В зависимости от значения магнитного квантового числа m1 ориентация электронного облака в пространстве будет также различной.

Понравилось? Лайкни нас на Facebook